首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of low cholesterol concentrations on an egg sphingomyelin bilayer is investigated using 31P magic angle spinning (MAS) NMR spectroscopy. The magnitude of the isotropic 31P MAS NMR line width is used to monitor the main gel to liquid crystalline phase transition, along with a unique gel phase pretransition. In addition, the 31P chemical shift anisotropy (CSA) and spin-spin relaxation times (T2), along with the effects of spinning speed, proton decoupling and magnetic field strength, are reported. The variation of this unique gel phase thermal pretransition with the inclusion of 5 through 21 mol% cholesterol is presented and discussed.  相似文献   

2.
A model membrane system composed of egg sphingomyelin (SM), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol was studied with static and magic angle spinning (31)P NMR spectroscopy. This model membrane system is of significant biological relevance since it is known to form lipid rafts. (31)P NMR under magic angle spinning conditions resolves the SM and DOPC headgroup resonances allowing for extraction of the (31)P NMR parameters for the individual lipid components. The isotropic chemical shift, chemical shift anisotropy, and asymmetry parameter can be extracted from the spinning side band manifold of the individual components that form liquid-ordered and liquid-disordered domains. The magnitude of the (31)P chemical shift anisotropy and the line width is used to determine headgroup mobility and monitor the gel-to-gel and gel-to-liquid crystalline phase transitions of SM as a function of temperature in these mixtures. Spin-spin relaxation measurements are in agreement with the line width results, reflecting mobility differences and some heterogeneities. It will be shown that the presence of DOPC and/or cholesterol greatly impacts the headgroup mobility of SM both above and below the liquid crystalline phase transition temperature, whereas DOPC displays only minor variations in these lipid mixtures.  相似文献   

3.
Calorimetric, X-ray diffraction, and 31P nuclear magnetic resonance (NMR) studies of aqueous dispersions of 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) gel phases at low temperatures (-60 to 22 degrees C) show thermal, structural, and dynamic differences when compared to aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) gel phases at corresponding temperatures. Differential scanning calorimetry of DHPC dispersions demonstrates a reversible, low-enthalpy "subtransition" at 4 degrees C in contrast to the conditionally reversible, high-enthalpy subtransition observed at 17 degrees C for annealed DPPC bilayers. X-ray diffraction studies indicate that DHPC dispersions form a lamellar gel phase with dav congruent to 46 A both above and below the "subtransition". It is suggested that the reduced dav observed for DHPC (46 A as compared to 64 A in DPPC) is due to an interdigitated lamellar gel phase which exists at all temperatures below the pretransition at 35 degrees C. 31P NMR spectra of DHPC gel-phase bilayers show an axially symmetric chemical shift anisotropy powder pattern which remains sharp down to -20 degrees C, suggesting the presence of fast axial diffusion. In contrast, 31P spectra of DPPC bilayers indicate this type of motion is frozen out at approximately 0 degrees C.  相似文献   

4.
27Al and 31P nuclear magnetic resonance (NMR) spectroscopies were used to investigate aluminum interactions at pH 3.4 with model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). A solution state 27Al NMR difference assay was developed to quantify aluminum binding to POPC multilamellar vesicles (MLVs). Corresponding one-dimensional (1D) fast magic angle spinning (MAS) 31P NMR spectra showed that aluminum induced the appearance of two new isotropic resonances for POPC shifted to -6.4 ppm and -9.6 ppm upfield relative to, and in slow exchange with, the control resonance at -0.6 ppm. Correlation of the (27)Al and (31)P NMR binding data revealed a 1:2 aluminum:phospholipid stoichiometry in the aluminum-bound complex at -9.6 ppm and a 1:1 aluminum:phospholipid stoichiometry in that at -6.4 ppm. Slow MAS 31P NMR spectra demonstrated shifts in the anisotropic chemical shift tensor components of the aluminum-bound POPC consistent with a close coordination of aluminum with phosphorus. A model of the aluminum-bis-phospholipid complex is proposed on the basis of these findings.  相似文献   

5.
Nuclear magnetic resonance study of sphingomyelin bilayers   总被引:3,自引:0,他引:3  
Bilayers of D-erthro-(N-stearoylsphingosyl)-1-phosphocholine (C18-SPM), previously characterized by differential scanning calorimetry [Bruzik, K. S., & Tsai, M.-D. (1987) Biochemistry 26, 5364-5368] in various phases, were studied by means of wide-line 31P, 2H, high-resolution 13C CP-MAS, and 1H MAS NMR. The fully relaxed gel phase of C18-SPM at temperatures below 306 K displayed 31P NMR spectra characteristic of the rigid phase with frozen rotation of the phosphocholine head group. Three other gel phases existing in the temperature range 306-318 K displayed spectra with incompletely averaged axially symmetric powder line shapes and were difficult to differentiate on the basis of their 31P NMR spectra. The gel-to-gel transition at 306 K was found to be fully reversible. The main phase transition at 318 K resulted in the formation of the liquid-crystalline phase for which spectra with axially symmetric line shapes of uniform width were obtained, regardless of the nature of the starting gel phase. 13C CP-MAS NMR spectra revealed significant differences in the molecular dynamics of sphingomyelin in various phases. All carbon atoms of the polar head group in the liquid-crystalline phase gave rise to a separate resonance lines. Numerous carbon atom signals were doubled in the stable phase, demonstrating the existence of two slowly interconverting conformers.  相似文献   

6.
We investigated if magic angle spinning (MAS) 1H NMR can be used as a tool for detection of liquid-ordered domains (rafts) in membranes. In experiments with the lipids SOPC, DOPC, DPPC, and cholesterol we demonstrated that 1H MAS NMR spectra of liquid-ordered domains (lo) are distinctly different from liquid-disordered (ld) and solid-ordered (so) membrane regions. At a MAS frequency of 10 kHz the methylene proton resonance of hydrocarbon chains in the ld phase has a linewidth of 50 Hz. The corresponding linewidth is 1 kHz for the lo phase and several kHz for the so phase. According to results of 1H NMR dipolar echo spectroscopy, the broadening of MAS resonances in the lo phase results from an increase in effective strength of intramolecular proton dipolar interactions between adjacent methylene groups, most likely because of a lower probability of gauche/trans isomerization in lo. In spectra recorded as a function of temperature, the onset of lo domain (raft) formation is seen as a sudden onset of line broadening. Formation of small domains yielded homogenously broadened resonance lines, whereas large lo domains (diameter >0.3 microm) in an ld environment resulted in superposition of the narrow resonances of the ld phase and the much broader resonances of lo. 1H MAS NMR may be applied to detection of rafts in cell membranes.  相似文献   

7.
Cholesterol content is critical for membrane functional properties. We studied the influence of cholesterol and its precursors desmosterol and lanosterol on lateral diffusion of phospholipids and sterols by1H pulsed field gradients (PFG) magic angle spinning (MAS) NMR spectroscopy. The high resolution of resonances afforded by MAS NMR permitted simultaneous diffusion measurements on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and sterols. The cholesterol diffusion mirrored the DPPC behavior, but rates were slightly higher at all cholesterol concentrations. DPPC and cholesterol diffusion rates decreased and became cholesterol concentration dependent with the onset of liquid-ordered phase formation. The activation energies of diffusion in the coexistence region of liquid-ordered/liquid-disordered phases are higher by about a factor of 2 compared to pure DPPC and to the pure liquid-ordered state formed at higher cholesterol concentrations. We assume that the higher activation energies are a reflection of lipid diffusion across domain boundaries. In lanosterol- and desmosterol-containing membranes, the DPPC and sterol diffusion coefficients are somewhat higher. Whereas the desmosterol rates are only slightly higher than those of DPPC, the lanosterol diffusion rates significantly exceed DPPC rates, indicating a weaker interaction between DPPC and lanosterol.  相似文献   

8.
Summary This study of angiotensin II (ANG II) membrane interactions uses a combination of31P NMR spectroscopy and differential scanning calorimetry (DSC), two valuable and complementary techniques which can provide useful information about the thermotropic and dynamic properties of peptide hormones in membranes. The major conclusion from the calorimetric experiments is that ANG II affects the phase properties of hydrated dipalmitoyl-phosphatidylcholine (DPPC) bilayers by mainly broadening the pretransition area. Preliminary31P NMR data seem to confirm the DSC results by showing that ANG II produces a lowering of the pretransition temperature but affects only minimally the main phase transition. In combination, the results from the two methods may indicate that the hormone produces its effects on the phospholipid head groups while its effects on the bilayer alkyl chains are not significant. Such results can be interpreted to mean that ANG II closely interacts with the phospholipid head groups perhaps up to the level of the interface, but does not enter deeper into the membrane bilayer.  相似文献   

9.
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct.  相似文献   

10.
The membrane disruption mechanism of pandinin 1 (pin1), an antimicrobial peptide isolated from the venom of the African scorpion, was studied using 31P, 13C, 1H solid-state and multidimensional solution-state NMR spectroscopy. A high-resolution NMR solution structure of pin1 showed that the two distinct alpha-helical regions move around the central hinge region, which contains Pro19. 31P NMR spectra of lipid membrane in the presence of pin1, at various temperatures, showed that pin1 induces various lipid phase behaviors depending on the acyl chain length and charge of phospholipids. Notably, it was found that pin1 induced formation of the cubic phase in shorter lipid membranes above Tm. Further, the 13C NMR spectra of pin1 labeled at Leu28 under magic angle spinning (MAS) indicated that the motion of pin1 bound to the lipid bilayer was very slow, with a correlation time of the order of 10(-3) s. 31P NMR spectra of dispersions of four saturated phosphatidyl-cholines in the presence of three types of pin1 derivatives, [W4A, W6A, W15A]-pin1, pin1(1-18), and pin1(20-44), at various temperatures demonstrated that all three pin1 derivatives have a reduced ability to trigger the cubic phase. 13C chemical shift values for pin1(1-18) labeled at Val3, Ala10, or Ala11 under static or slow MAS conditions indicate that pin1(1-18) rapidly rotates around the average helical axis, and the helical rods are inclined at approximately 30 degrees to the lipid long axis. 13C chemical shift values for pin1(20-44) labeled at Gly25, Leu28, or Ala31 under static conditions indicate that pin1(20-44) may be isotropically tumbling. 1H MAS chemical shift measurements suggest that pin1 is located at the membrane-water interface approximately parallel to the bilayer surface. Solid-state NMR results correlated well with the observed biological activity of pin1 in red blood cells and bacteria.  相似文献   

11.
The polymorphic phase behavior of aqueous dispersions of a number of representative phosphatidylcholines with methyl iso-branched fatty acyl chains was investigated by Fourier transform infrared (FT-IR) and phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy. For the longer chain phosphatidylcholines, where two transitions are resolved on the temperature scale, the higher temperature event can unequivocally be assigned to the melting of the acyl chains (i.e., a gel/liquid-crystalline phase transition), whereas the lower temperature event is shown to involve a change in the packing mode of the methylene and carbonyl groups of the hydrocarbon chains in the gel state (i.e., a gel/gel transition). The infrared spectroscopic data suggest that the methyl iso-branched phosphatidylcholines assume a partially dehydrated, highly ordered state at low temperatures, resembling the Lc phase recently described for the long-chain n-saturated phosphatidylcholines. At higher temperatures, some branched-chain phosphatidylcholines appear to assume a fully hydrated, loosely packed gel phase similar to but not identical with the P beta, phase of their linear saturated analogues. Thus, the iso-branched phosphatidylcholine gel/gel transition corresponds, at least approximately, to a summation of the structural changes accompanying both the subtransition and the pretransition characteristic of the longer chain n-saturated phosphatidylcholines. The infrared spectroscopic data also show that, in the low-temperature gel state, there are significant differences between the odd- and even-numbered isoacylphosphatidylcholines with respect to their hydrocarbon chain packing modes as well as to their head group and interfacial hydration states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We studied domain formation in mixtures of the monounsaturated lipids SOPC and POPE as a function of temperature and composition by NMR. Magic angle spinning at kHz frequencies restored resolution of (1)H NMR lipid resonances in the fluid phase, whereas the linewidth of gel-phase lipids remained rather broad and spinning frequency dependent. In regions of fluid- and gel-phase coexistence, spectra are a superposition of resonances from fluid and gel domains, as indicated by the existence of isosbestic points. Quantitative determination of the amount of lipid in the coexisting phases is straightforward and permitted construction of a binary phase diagram. Lateral rates of lipid diffusion were determined by (1)H MAS NMR with pulsed field gradients. At the onset of the phase transition near 25 degrees C apparent diffusion rates became diffusion time dependent, indicating that lipid movement is obstructed by the formation of gel-phase domains. A percolation threshold at which diffusion of fluid-phase lipid becomes confined to micrometer-size domains was observed when approximately 40% of total lipid had entered the gel phase. The results indicate that common phosphatidylethanolamines may trigger domain formation in membranes within a physiologically relevant temperature range. This novel NMR approach may aid the study of lipid rafts.  相似文献   

13.
Bonev BB  Chan WC  Bycroft BW  Roberts GC  Watts A 《Biochemistry》2000,39(37):11425-11433
Nisin is a positively charged antibacterial peptide which binds to the negatively charged membranes of Gram-positive bacteria. The initial interaction of the peptide with model membranes of neutral (phosphatidylcholine) and negatively charged (phosphatidylcholine/phosphatidylglycerol) model lipid membranes was studied using nonperturbing solid state magic angle spinning (MAS) (31)P NMR and (2)H wide-line NMR. In the presence of nisin, the coexistence of two bilayer lipid environments was observed both in charged and in neutral membranes. One lipid environment was found to be associated with lipid directly interacting with nisin and one with noninteracting lipid. Solid state (31)P MAS NMR results show that the acidic membrane lipid component partitions preferentially into the nisin-associated environment. Deuterium NMR ((2)H NMR) of the selectively headgroup-labeled acidic lipid provides further evidence of a strong interaction between the charged lipid component and the peptide. The segregation of acidic lipid into the nisin-bound environment was quantified from (2)H NMR measurements of selectively headgroup-deuterated neutral lipid. It is suggested that the observed lipid partitioning in the presence of nisin is driven, at least initially, by electrostatic interactions. (2)H NMR measurements from chain-perdeuterated neutral lipids indicate that nisin perturbs the hydrophobic region of both charged and neutral bilayers.  相似文献   

14.
It is proposed that AT1 antagonists (ARBs) exert their biological action by inserting into the lipid membrane and then diffuse to the active site of AT1 receptor. Thus, lipid bilayers are expected to be actively involved and play a critical role in drug action. For this reason, the thermal, dynamic and structural effects of olmesartan alone and together with cholesterol were studied using differential scanning calorimetry (DSC), 13C magic-angle spinning (MAS) nuclear magnetic resonance (NMR), cross-polarization (CP) MAS NMR, and Raman spectroscopy as well as small- and wide angle X-ray scattering (SAXS and WAXS) on dipalmitoyl-phosphatidylcholine (DPPC) multilamellar vesicles. 13C CP/MAS spectra provided direct evidence for the incorporation of olmesartan and cholesterol in lipid bilayers. Raman and X-ray data revealed how both molecules modify the bilayer's properties. Olmesartan locates itself at the head-group region and upper segment of the lipid bilayers as 13C CP/MAS spectra show that its presence causes significant chemical shift changes mainly in the A ring of the steroidal part of cholesterol. The influence of olmesartan on DPPC/cholesterol bilayers is less pronounced. Although, olmesartan and cholesterol are residing at the same region of the lipid bilayers, due to their different sizes, display distinct impacts on the bilayer's properties. Cholesterol broadens significantly the main transition, abolishes the pre-transition, and decreases the membrane fluidity above the main transition. Olmesartan is the only so far studied ARB that increases the gauche:trans ratio in the liquid crystalline phase. These significant differences of olmesartan may in part explain its distinct pharmacological profile.  相似文献   

15.
Phospholipid bilayer interaction of olanzapine (OLZ), a thienobenzodiazepine derivative and an antipsychotic agent, has been studied with (13)C and (31)P solid-state NMR. A dipalmitoyl phosphatidylcholine (60%)/1-palmitoyl-2-oleoyl phosphatidylserine (40%) bilayer (DPPC(60%)/POPS(40%)) with 50 wt.% H(2)O, with and without 10 mol% OLZ have been investigated. The results reveal that both the serine and the choline head groups are affected by OLZ interaction with the bilayer. The OLZ interaction with the serine and the choline head groups appears to be caused by electrostatic attraction to the serine head group carboxyl and repulsion of the choline head group positively charged nitrogen. (31)P MAS NMR experiments show the appearance of two new (31)P resonances both for the PS and the PC phosphorous in the presence of OLZ. Static (31)P NMR spectra demonstrate a decrease in chemical shift anisotropy (CSA) of the OLZ containing bilayer when in the liquid-crystalline phase and an increase in CSA when in the gel state.  相似文献   

16.
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.  相似文献   

17.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

18.
A recent study using differential scanning calorimetry (DSC) showed that the thermotropic phase behavior of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC) is sensitive to the configuration at phosphorus and that the Rp isomer displayed only a broad transition at 45.6 degrees C [Wisner, D. A., Rosario-Jansen, T., & Tsai, M.-D. (1986) J. Am. Chem. Soc. 108, 8064-8068]. We have employed X-ray diffraction, 31P NMR, and Fourier transform infrared (FT-IR) spectroscopy to characterize various phases of the isomers of DPPsC, to compare the structural differences between 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and isomers of DPPsC, and to identify structural factors responsible for the unique behavior of the RP isomer. The results from all three techniques support the previous proposal based on DSC studies that (SP)- and (RP + SP)-DPPsC undergo a subtransition, a pretransition, and a main transition analogous to those of DPPC, while (RP)-DPPsC is quite stable at the subgel phase and undergoes a direct subgel----liquid-crystalline transition at 46 degrees C. Quantitative differences between DPPC and DPPsC (i.e., the effect of sulfur substitution rather than the configurational effect) in the subgel phase have also been observed in the chain spacing, the motional averaging, and the factor group splitting (revealed by X-ray diffraction, 31P NMR, and FT-IR, respectively). In particular, DPPsC isomers are motionally rigid and show enhanced factor group splitting in the subgel phase. These results suggest that DPPsC is packed in different subcells relative to DPPC in the subgel phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Employing high-sensitivity differential scanning calorimetry (DSC), we discovered a pretransition in binary mixtures of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol, the main feature of which is its extraordinarily high transition enthalpy of 6.3 Kcal/mol, nearly an order of magnitude higher than those values previously found for such transitions. Using DSC, deuterium nuclear magnetic resonance, and electron microscopy, it is shown that the energetic origin of this type of pretransition is caused by interactions between the phospholipids in their headgroup region. The most likely interaction involves the formation of a hydrogen bond between the headgroups of the two phospholipid species in the gel (L beta') phase which is disrupted at the transition to the "ripple" (P beta') phase. The finding that this large pretransition is unique for mixtures of phosphocholine and phosphoglycerol with myristoyl chains indicates a dependence of the headgroup long range order of such mixtures in the gel phase on the acyl chain length.  相似文献   

20.
31P cross polarization (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were acquired for various linear and branched di- and tri-nucleotides attached to a controlled pore glass (CPG) solid support. The technique readily distinguishes the oxidation state of the phosphorus atom (phosphate versus phosphate), the presence or absence of a protecting group attached directly to phosphorus (cyanoethyl), and other large changes in the phosphorus chemistry (phosphate versus phosphorothioate). However, differences in configurational details remote from the phosphorus atom, such as the attachment position of the ribose sugar (2'5' versus 3'5'), or the particulars of the nucleotide bases (adenine versus uridine versus thymine), could not be resolved. When different stages of the oligonucleotide synthetic cycle were examined, 31P CPMAS NMR revealed that the cyanoethyl protecting group is removed during the course of chain assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号