首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acid-extractable, water-soluble, polysaccharide sulphate, isolated from Padina pavonia, comprised variable proportions of glucuronic acid, galactose, glucose, mannose, xylose, and fucose in addition to a protein moiety. Partial acid hydrolysis and autohydrolysis of the free acid polysaccharide yielded several oligosaccharides. Evidence from periodate oxidation studies indicated that the inner polysaccharide portion is composed of (1 → 4)-linked β-D-glucuronic acid, (1 → 4)-linked β-D-mannose and (1 → 4)-linked β-D-glucose residues. The heteropolymeric partially sulphated exterior portion is attached to the inner part and comprises various ratios of (1 → 4)-linked β-D-galactose, β-D-galactose-3-sulphate residues, (1 → 4)-linked β-D-glucose residues, (1 → 2)-linked α-L-fucose 4-sulphate residues and (1 → 3)-linked β-D-xylose residues.  相似文献   

2.
Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis.  相似文献   

3.
《Phytochemistry》1986,25(7):1645-1647
A sulphated heteropolysaccharide was isolated from a green seaweed, Caulerpa taxifolia, by extraction with acid and purified via its copper complex. Methylation analysis of both the sulphated and desulphated polysaccharides revealed the presence of 1,4-linked xylose, 1,6-linked galactose, 1,4,6-linked mannose and non-reducing galactose end group units which are all devoid of sulphate groups. In addition 1,4-linked galactose units sulphated at C-3 are also present. Quantitative periodate oxidation showed a consumption of 1.30 and 1.60 moles of oxidant per anhydrosugar unit in the sulphated and desulphated polysaccharides respectively. The oxo-polysaccharides after reduction and hydrolysis revealed the presence of glycerol, erythritol and unoxidized galactose in the mol ratio 11.6:5.1:4.9 and 11.2:5.0:1.0 respectively, besides threitol (3.9 mol) in the desulphated polysaccharide.  相似文献   

4.
Exopolysaccharide production by Lactobacillus casei CG11 was studied in basal minimum medium containing various carbon sources (galactose, glucose, lactose, sucrose, maltose, melibiose) at concentrations of 2, 5, 10, and 20 g/liter. L. casei CG11 produced exopolysaccharides in basal minimum medium containing each of the sugars tested; lactose and galactose were the poorest carbon sources, and glucose was by far the most efficient carbon source. Sugar concentrations had a marked effect on polymer yield. Plasmid-cured Muc- derivatives grew better in the presence of glucose and attained slightly higher populations than the wild-type strain. The values obtained with lactose were considerably lower for both growth and exopolysaccharide yield. The level of specific polymer production per cell obtained with glucose was distinctively lower for Muc- derivatives than for the Muc+ strain. The polymer produced by L. casei CG11 in the presence of glucose was different from that formed in the presence of lactose. The polysaccharide produced by L. casei CG11 in basal minimum medium containing 20 g of glucose per liter had an intrinsic viscosity of 1.13 dl/g. It was rich in glucose (76%), which was present mostly as 2- or 3-linked residues along with some 2,3 doubly substituted glucose units, and in rhamnose (21%), which was present as 2-linked or terminal rhamnose; traces of mannose and galactose were also present.  相似文献   

5.
The extracellular, acidic heteropolysaccharide from Xanthomonas S19 consists of D-glucuronic acid, D-glucose, D-galactose, and D-mannose residues in the approximate molar ratios of 1.6:3:1:1, plus acetyl groups liked to C-2 and/or C-3 of a large proportion of the glucose residues. Methylation studies showed that the glucose is present as non-reducing end-group also as 1,2- and 1,4-linked units, the galactose residues are solely 1,3-linked, a major proportion of the mannose residues are 1,2,4-linked and the rest 1,2-linked. A high proportion of the glucuronic acid units are 1,4-linked. Periodate oxidation confirmed the presence of these linkages. The disaccharides D-Glc-(1→4)-D-Glc,D-Glc-(1→2)-D-Man, D-Glc-(1→3)-D-Gal, D-Gal-(1→2)-D-Glc, D-GlcA-(1→4)-D-GlcA, and β-D-GlcA-(1→4)-D-Man were isolated from a partial hydrolysate of the polysaccharide, and characterised. The similarities and differences between this polysaccharide and those from other Xanthomonas species are discussed.  相似文献   

6.
The released polysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02 was separated into two main fractions byanion-exchange chromatography. The major fraction consisted of glucose,fucose, mannose, arabinose and glucuronic acid. Judging from thechromatography on Sepharose 2B, the major fraction was not furtherfractionated, and its apparent molecular weight was above 2.0 × 106 Da.The minor fraction consisted of rhamnose, mannose, fucose,glucose, galactose and glucuronic acid, with traces of arabinose.Methylation and GC-MS spectrometry analyses of the major fractionrevealed the presence of 1-linked glucose, 1,3-linked glucose, 1,3-linkedfucose, 1,4-linked fucose, 1,3-linked arabinose, 1,2,4-linked mannose,1,3,6-linked mannose, 1-linked glucuronic acid and 1,3-linked glucuronicacid residues. The major fraction was thought to originate from capsularpolysaccharide. The released polysaccharides, obtained from cultures atdifferent age of culture, showed no striking variations in themonosaccharide composition and the relative proportions of themonosaccharides. However, the proportions of galactose and rhamnose inthe released polysaccharides, obtained from cultures under different salinity,were significantly different. The released polysaccharide also exhibitedgelling properties and strong affinity for metal ions.  相似文献   

7.
A water-soluble polysaccharide DNP-W2 composed of glucose, mannose, and galactose in the molar ratio of 6.1:2.9:2.0 had been isolated from the stems of Dendrobium nobile. Its molecular weight was 1.8 × 104 Da determined by HPGPC. Structural features of DNP-W2 were investigated by a combination of chemical and instrumental analysis, including FTIR, GC, GC-MS, periodate oxidation-Smith degradation, methylation analysis, partial acid hydrolysis, and NMR spectroscopy. The results showed that DNP-W2 is a 2-O-acetylgalactomannoglucan and has a backbone consisting of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→4)-linked β-d-Manp, with branches at O-6 of (1→4)-linked β-d-Glcp and β-d-Manp. The branches are composed of α-d-Galp. The acetyl groups are substituted at O-2 of (1→4)-linked Manp. Preliminary tests in vitro reveals that DNP-W2 can stimulate ConA- and LPS-induced T and B lymphocyte proliferation.  相似文献   

8.
An acidic arabinogalactan has been isolated from fibres of the cotton plant (Gossypium arboreum L.) at the stage of intensive secondary-wall formation. The polysaccharide contains arabinose, galactose, rhamnose, and glucuronic acid residues in the molar ratios 1:1.2:0.1:0.2. Periodate oxidation and methylation studies showed that there is a main chain of (1→3)-linked galactopyranosyl residues to which side chains are attached at O-6. The side chains consist of (1→6)-linked galactopyranosyl residues substituted at O-3 by (1→5)-linked arabinofuranosyl chains. Terminal galactopyranosyl, rhamnopyranosyl, and glucopyranuronosyl groups are also present. Enzymic hydrolysis showed that the configurations of the galactose and arabinose residues are d and l, respectively.  相似文献   

9.
The non-cellulosic ß-glucan1 in the cell wall of Phaseolusaureus hypocotyb was studied. Evidence that xyloglucan is presentin a hemicellulose fraction was obtained by its isolation fromcell wall preparations. This polysaccharide was homogeneouson zone electrophoresis and ultracentrifugation. On acid hydrolysis,it gave glucose, xylose, galactose, and fucose in the approximatemolar ratio of 10 : 7 : 2.5 : 1. Its solution gave a reddishviolet color with iodine-staining solution. The results of partialacid hydrolysis and cellulase treatment suggest a structurein which xylose, galactose, and fucose attached as side chainsto a sequenceof ß-l,4-linked glucose. The xyloglucanisolated accounted for 13.9% of the total non-cellulosic fractions. (Received May 10, 1976; )  相似文献   

10.
The gum exudate from Combretum hartmannianum is water-soluble, forms very viscous solutions, and contains galactose (22%), arabinose (43%), mannose (10%), xylose (6%), rhamnose (4%), glucuronic acid (6%), 4-O-methylglucuronic acid (2%), and galacturonic acid (7%). The acidic components produced on hydrolysis of the gum were 6-O-(β-D-glucopyranosyluronic acid)-D-galactose, and two saccharides that had the same chromatographic mobility, and contained mannose and galacturonic acid, and galactose and 4-O-methylglucuronic acid, respectively. Methylation and methanolysis of the gum indicated the presence of terminal uronic acid, rhamnose, xylose, galactose, arabinofuranose, and arabinopyranose. Controlled, acid hydrolysis indicated the presence of (1→3)-linked arabinopyranose side-chains and (1→6)-linked galactose residues. C. hartmannianum gum, when subjected to two Smith-degradations, yielded Polysaccharides I and II, both of which contained galactose, arabinose, and mannose. Insufficient crude gum was available for a complete structural study, but the molecule was shown to contain long, sparsely branched chains of (1→6)-linked galactose residues, to which are attached (1→3)-linked arabinose and (1→3)-linked mannose side-chains.  相似文献   

11.
The structure of the extracellular polysaccharide gum from nitrogen-fixing Rhizobium sp. strain CB744 (a member of the slow-growing Cowpea group) has been investigated. Gas-chromatographic analysis of the alditol acetates of the acid hydrolysate showed the gum to be composed of galactose, 4-O-methylgalactose, mannose, and glucose in the molar ratio of 1:2.5:3.5:7.0. The polysaccharide is unusual in that it contains no carbonyl substituent, although such substituents are common amongst polysaccharides produced by the slow-growing group. The native and de-branched polysaccharides were examined by methylation analysis. The anomeric configurations were determined by 13C-n.m.r. and oxidation by chromium trioxide. It is concluded that there are two β-(1→4)-linked glycopyranosyl residues for each α-(1→4)-linked mannopyranosyl residue, and that each mannose is substituted at O-6 by a β-galactopyranosyl residue, with 71% of the galactose groups being present as 4-O-methylgalactose.  相似文献   

12.
Sulfated polysaccharide isolated from tetrasporic plants of Tichocarpus crinitus was investigated. The polysaccharide was isolated by two methods: with water extraction at 80 °C (HT) and with a mild alkaline extraction (AE). The extracted polysaccharides were presented by non-gelling ones only, while galactose and 3,6-AG were the main monosaccharides, at the same time amount of 3,6-AG in AE polysaccharides was the similar to that of HT. According to methods of spectroscopy and mass spectrometry, the polysaccharide from tetrasporic T. crinitus contains main blocks of 1,3-linked β-d-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-d-galactopyranosyl while 6-sulfated 4-linked galactopyranosyl resudies are randomly distributed along the polysaccharide chain. The alkaline treatment of HT polysaccharide results in obtaining polysaccharide with regular structure that composed of alternating 1,3-linked β-d-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-d-galactopyranosyl residues. Native polysaccharide (HT) possessed both high anticoagulant and antiplatelet activity measured by fibrin clotting and platelet aggregation induced by collagen. This activity could be connected with peculiar chemical structure of HT polysaccharide which has high sulfation degree and contains also 3,6-anhydrogalactose in the polymer chain.  相似文献   

13.
松杉灵芝发酵菌丝体经热水提取,冻融分级及乙醇二次分级,分离纯化出GFb级份,电泳及凝胶柱层析示其为均一多糖,分子量为9.8万。小于子实体多糖相应级份。 GFb经红外光谱,气相色谱,气质联机,碳13核磁共振,高碘酸盐氧化,Smith降解,甲基化及部分酸水解分析,确定其基本结构中主链为1→6葡萄糖基和1→6半乳糖基构戍,二者之比为1∶1,分支点在0-3位上,分枝点率为50%,与子实体多糖GF_3相同,侧链由1→3葡萄糖基,1→4葡萄糖基,末端葡萄糖基及末端半乳糖基构成,分子中分枝率为55.6%,较子实体多糖GF_3分枝率略低,分枝链略短。  相似文献   

14.
Structure of the arabinogalactan from zea shoots   总被引:4,自引:4,他引:0       下载免费PDF全文
Kato Y  Nevins DJ 《Plant physiology》1984,75(3):745-752
The structure of the arabinogalactan obtained from the buffer-homogenate of Zea mays L. (hybrid B73 × Mo17) shoots has been studied. The purified polysaccharide was investigated by methylation analysis before and after controlled acid hydrolysis. Arabinogalactan-1 consists of arabinose, galactose, xylose, uronic acid, and glucose in the molar ratio of 37.1:55.8:3.0:4.1:trace, and arabinogalactan-2 consists of the same sugars in the ratio of 35.4:53.9:1.6:9.2:trace. A trace of protein was detected in arabinogalactan-1 and about 0.2% was present in 2. About 20% of the galactose residues in arabinogalactan-1 constitute a (1 → 3)-linked galactan chain and approximately 60% constitute a (1 → 6)-linked galactan sequence. About 15% of the galactose residues in arabinogalactan-1 are substituted by galactose in the 3- and 6-positions, thereby constituting branch points of the galactan framework. The remainder (5%) of the galactose residues in arabinogalactan-1 are located at nonreducing terminal positions. About 85% of the (1 → 6)-galactosyl sequence is substituted, mostly by single arabinose residues. Nonreducing terminal glucuronic acid is attached to C-6 of galactose residues. The basic structure of arabinogalactan-2 is similar to that of arabinogalactan-1.  相似文献   

15.
Mucoran, an acidic heteropolysaccharide isolated from the cell walls of the fungus Mucor rouxii, was purified by DEAE-Sephadex chromatography. It consists mainly of D-glucuronic acid, D-mannose, and L-fucose in a 5:3:2 ratio plus small proportions of galactose and glucose. Mucoran was subjected to methylation by the Hakomori procedure. Only about 60–70% of the polysaccharide was recovered as fully methylated material. A large proportion of this methylated material was dialyzable, indicating extensive depolymerization, probably via β-elimination, during exposure to dimethylsulfinyl carbanion. The fully methylated fraction of mucoran (both dialyzable and nondialyzable portions) consists of unbranched glucuronomannan chains, with equal proportions of 4-linked D-glucuronic acid residues and 3-linked D-mannose residues. The aldobiouronic acid, α-D-glucopyranosyluronic acid-(1→3)-D-mannose, was a major product of partial acid hydrolysis of mucoran. The principal structural feature of mucoran is the following alternating sequence of D-glucuronic acid (GlcA) and D-mannose (Man) residues: D-Man-(1→[4)-α-D-GlcA-(1→3)-D-Man-(1]n-.  相似文献   

16.
The purified, specific polysaccharide from Vibrio cholera type NAG, NV 384, O-antigen, 2A, 2Bhuman, contains glucose (5.14%), galactose (4.21%), mannose (64.8%), xylose (3.16%), arabinose (1.98%), fucose (1.50%), mannuronic acid (14.3%), phosphate (0.32%), 2-amino-2-deoxy-D-glucose (2.9%), and 2-amino-2-deoxy-D-galactose (1.0%). Various reactions have shown that the material comprises a phosphoric diester-linked polysaccharide containing mainly (1→2)-linked mannopyranose residues that are highly branched with other sugar residues.  相似文献   

17.
A pectin polysaccharide named bergenan was isolated from the freshly collected leaves of the leather bergenia Bergenia crassifolia by extraction with an aqueous solution of ammonium oxalate. The main component of its carbohydrate chain was shown to be the residues of D-galacturonic acid (about 80%). In addition, the polysaccharide contains the residues of galactose, arabinose, and rhamnose; their total content is less than 15%. It was shown that the bergenan samples from bergenia leaves collected at different vegetation periods (from July to September) do not substantially differ either in monosaccharide composition or in the viscosity of their aqueous solutions. The results of enzymatic hydrolysis by α-1,4-galacturonase (pectinase), partial acidic hydrolysis, NMR spectroscopy, and methylation with subsequent analysis of the results by GC-MS indicate that the bergenan macromolecule contains the regions of a linear α-1,4-D-galactopyranosyluronan and rhamnogalacturonan-I (RG-I). Galacturonan responds for a greater part of the macromolecule. A considerable amount of its constitutent galacturonic acid residues are present as methyl esters. The side chains in RG-I are attached to the rhamnopyranose residues of the backbone by a 1,4-linkages and are composed of the residues of terminal arabinofuranose and galactopyranose, 1,5-linked α-arabinofuranose, and 1,4- and 1,6-linked β-galactopyranose. The branching points of the side chains of the RG-I molecule are 3,4- and 3,6-di-O-substituted galactose residues.  相似文献   

18.
Cell walls of the Basidiomycete fungus Polyporus tumulosus (Cooke) were fractionated, and the polysaccharide content of the fractions investigated. The major constituents of the cell wall include four polysaccharides, chitin, a β-1, 3-glucan and the alkali soluble α-glucan and xylomannan.The glucan is highly dextrotatory with an [α]D21 of + 221° and gave on partial acid hydrolysis and acetolysis an homologous series of oligosaccharides. The disaccharide was shown to be nigerose 3-0-α-D-glucopyranosyl-D-glucose. Periodate oxidation and methylation studies provided supporting evidence that the polysaccharide is an essentially unbranched polymer of 1,3-linked glucose residues.The other alkali-soluble polysaccharide, a xylomannan, is a polymer of mannose and xylose in the approximate molar proportions of 1.2:1. It has an [α]D = + 56° and on partial acid hydrolysis and acetolysis gave an homologous series of 1,3-linked mannodextrins but no oligosaccharides containing xylose were obtained. An α-1,3-linked mannan was prepared from the xylomannan by degradation with mild acid or by degradation of the periodate-oxidased and reduced xylomannan. The structure therefore is visualised as having a backbone of 1,3-linked mannan, to which xylose residues are attached. Methylation studies showed that branching occurs at C-4 of the mannopyranose units; the presence of 2,3-di-o-methyl-d-xylose in the hydrolysate of the methylated polysaccharide indicated that some of the xylose residues are 1,4-linked. The possible structure of the fungal cell wall is discussed in the light of the results obtained.  相似文献   

19.
A hemicellulosic polysaccharide, which was homogeneous on sedimentation analysis and also on electrophoresis, was isolated from the rice endosperm cell walls by the combination of alkaline extraction, ion exchange chromatography and iodine complex formation. It is composed of arabinose, xylose and glucose (molar ratio, 1.0: 2.0: 5.7) together with a small amount of galactose and rhamnose. Methylation analysis, Smith degradation and fragmentation with cellulase showed that this polysaccharide is composed of three distinct polysaccharide moieties i.e., xyloglucan, β-glucan and arabinoxylan. The xyloglucan consists of β-(1→4)-linked glucan back bone and short side chains of single xylose units or galactosylxylose both attached to C-6 of the glucose residues. The β-glucan contains both (1 →3)-and (1→4)-linkages similarly to the other cereal β-glucans, but differ from them in containing the blocks of (1→3)-linked glucose residues in the chain. The arabinoxylan has a highly branched structure, in which 78% of (1→4)-linked xylose residues have short side chains of arabinose at C-3 position.

On the basis of these findings, the interconnection of these polysaccharide moieties is discussed.  相似文献   

20.
An acidic polysaccharide isolated from the seeds of Ocimum basilicum by DEAE-cellulose fractionation was ~92% pure, having an associated glucan impurity (~8%). The polysaccharide is composed of d-xylose, l-arabinose, l-rhamnose, and d-galacturonic acid in the molar ratios 15:9:7:12, together with traces or galactose and glucose. Methylation analysis indicated that the polysaccharide contained a (1→4)-linked xylan backbone carrying branch-points at C-2 and C-3 of the xylosyl residues, and revealed the structural features of the side chains. Periodateoxidation and Smith-degradation studies support the results of methylation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号