共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maiorano L Falcucci A Zimmermann NE Psomas A Pottier J Baisero D Rondinini C Guisan A Boitani L 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1578):2681-2692
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. 相似文献
3.
Yaoyao Zhang Xiaodong Sun Zhiwen Nong Mo Chen Yujiang Hao Jianghua Wang Kexiong Wang Ding Wang Zhigang Mei 《Marine Mammal Science》2024,40(2):e13082
The establishment of marine protected areas (MPAs) for cetaceans is an important strategy to mitigate human disturbance and protect biodiversity. Despite abundant cetacean species, there are only a few MPAs dedicated to cetacean conservation in China, all of which are for inshore dolphins. Bryde's whales, the only nearshore baleen whale population in mainland China, are conflicting with intensive human activities, yet an effective conservation strategy is lacking. This study used species distribution models to analyze distribution patterns and suitable habitats of Bryde's whales in the Beibu Gulf and proposes the first baleen whale MPA in China. Our results showed Bryde's whales have a seasonal distribution pattern in the Beibu Gulf, and that the waters around Weizhou Island and the southeastern coast of Vietnam were their core habitats. The seasonal nighttime light data indicated a negative relationship between the number of ship lights and Bryde's whale sightings and suggest that Bryde's whales might be threatened by fisheries. We proposed an MPA based on the results, suggesting that the waters within 20 km around Weizhou Island should be declared a protected area. Furthermore, we recommend that anthropogenic activities in the waters around Weizhou Island are better managed to reduce negative impacts on marine life. 相似文献
4.
Cristina G. Soto 《Reviews in Fish Biology and Fisheries》2001,11(3):181-195
The potential effects of global climate changeon marine protected areas do not appear to havebeen addressed in the literature. This paperexamines the literature on protected areas,conservation biology, marine ecology,oceanography, and climate change, and reviewssome of the relevant differences between marineand terrestrial environments. Frameworks andclassifications systems used in protected areadesign are discussed. Finally, a frameworkthat summarizes some of the importantoceanographic processes and their links to thefood chain are reviewed. Species abundance anddistribution are expected to change as a resultof global climate change, potentiallycompromising the efficacy of marine protectedareas as biodiversity conservation tools. Thisreview suggests the need for: furtherinterdisciplinary research and the use oflinked models; an increase in marine protectedareas for biodiversity conservation and asresearch sites for teasing apart fishingeffects from climate effects; a temporallyresponsive approach to siting new marineprotected areas, shifting their locations ifnecessary; and large-scale ecosystem/integratedmanagement approaches to address the competinguses of the oceans and boundary-less threatssuch as global climate change and pollution. 相似文献
5.
6.
Xuzhe Zhao Wei Wei Jingjing Zhang Shan Pan Qibing Che Junfeng Tang 《Diversity & distributions》2023,29(8):1064-1073
Aim
Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.Location
China.Methods
Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.Results
Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.Main Conclusions
Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation. 相似文献7.
Future battlegrounds for conservation under global change 总被引:2,自引:0,他引:2
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change. 相似文献
8.
Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58?±?2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63?±?2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P?0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. 相似文献
9.
10.
Sean A. Parks Carlos Carroll Solomon Z. Dobrowski Brady W. Allred 《Global Change Biology》2020,26(5):2944-2955
Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, ‘human exposure’, that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non‐protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non‐protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non‐protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts. 相似文献
11.
12.
13.
14.
Charlotte Mitchell;Jamie Bolam;Laura D. Bertola;Vincent N. Naude;Lucas Gonçalves da Silva;Orly Razgour; 《Ecology and evolution》2024,14(5):e11391
Predicting the effects of global environmental changes on species distribution is a top conservation priority, particularly for large carnivores, that contribute to regulating and maintaining ecosystems. As the most widespread and adaptable large felid, ranging across Africa and Asia, leopards are crucial to many ecosystems as both keystone and umbrella species, yet they are threatened across their ranges. We used intraspecific species distribution models (SDMs) to predict changes in range suitability for leopards under future climate and land-use change and identify conservation gaps and opportunities. We generated intraspecific SDMs for the three western leopard subspecies, the African, Panthera pardus pardus; Arabian, Panthera pardus nimr; and Persian, Panthera pardus tulliana, leopards, and overlapped predictions with protected areas (PAs) coverage. We show that leopard subspecies differ in their environmental associations and vulnerability to future changes. The African and Arabian leopards are predicted to lose ~25% and ~14% of their currently suitable range, respectively, while the Persian leopard is predicted to experience ~12% range gains. We found that most areas predicted to be suitable were not protected, with only 4%–16% of the subspecies' ranges falling inside PAs, and that these proportions will decrease in the future. The highly variable responses we found between leopard subspecies highlight the importance of considering intraspecific variation when modelling vulnerability to climate and land-use changes. The predicted decrease in proportion of suitable ranges falling inside PAs threatens global capacity to effectively conserve leopards because survival rates are substantially lower outside PAs due to persecution. Hence, it is important to work with local communities to address negative human-wildlife interactions and to restore habitats to retain landscape connectivity where PA coverage is low. On the other hand, the predicted increase in range suitability across southern Europe presents opportunities for expansion outside of their contemporary range, capitalising on European rewilding schemes. 相似文献
15.
Raimo Virkkala Juha Pöyry Risto K. Heikkinen Aleksi Lehikoinen Jari Valkama 《Ecology and evolution》2014,4(15):2991-3003
Global climate change is a major threat to biodiversity, posing increasing pressures on species to adapt in situ or shift their ranges. A protected area network is one of the main instruments to alleviate the negative impacts of climate change. Importantly, protected area networks might be expected to enhance the resilience of regional populations of species of conservation concern, resulting in slower species loss in landscapes with a significant amount of protected habitat compared to unprotected landscapes. Based on national bird atlases compiled in 1974–1989 and 2006–2010, this study examines the recent range shifts in 90 forest, mire, marshland, and Arctic mountain heath bird species of conservation concern in Finland, as well as the changes in their species richness in protected versus unprotected areas. The trends emerging from the atlas data comparisons were also related to the earlier study dealing with predictions of distributional changes for these species for the time slice of 2051–2080, developed using bioclimatic envelope models (BEMs). Our results suggest that the observed changes in bird distributions are in the same direction as the BEM‐based predictions, resulting in a decrease in species richness of mire and Arctic mountain heath species and an increase in marshland species. The patterns of changes in species richness between the two time slices are in general parallel in protected and unprotected areas. However, importantly, protected areas maintained a higher level of species richness than unprotected areas. This finding provides support for the significance and resilience provision of protected area networks in preserving species of conservation concern under climate change. 相似文献
16.
鲨鱼在气候变化和人类活动等因素的影响下面临着种群衰退的风险,开展鲨鱼保护优先区研究是鲨鱼保护行动的重要工作.将气候速度引入鲨鱼保护优先区的识别过程,旨在阐明中国周边海域鲨鱼现状保护成效和保护空缺,并预测气候速度影响下的鲨鱼保护优先区空间格局及其变化趋势.以集成物种分布模型模拟的146种鲨鱼栖息地作为保护对象,以2015年至2100年两种气候变化情景下的气候速度作为保护的机会成本,基于系统保护规划理论模拟现状和未来情景下的鲨鱼保护优先区选址方案.研究结果表明:(1)长江口以南至台湾海峡和北部湾近岸海域为鲨鱼多样性分布的主要区域,台湾海峡区域亦为珍稀濒危物种的重要分布区;(2)在两种气候情景下,南海中南部将面临较高的气候变化风险,而长江口以南至珠江口的近岸海域气候速度均相对较低,提示了这些区域或能成为气候变化影响下的生物避难所;(3)现有保护区仅保护了1.33%的海域和不到4%的鲨鱼物种,尚存在较大的保护空缺.当保护海域比例提升至10%时,可覆盖绝大多数鲨鱼物种.而当比例提升至30%时,珍稀濒危物种的栖息地将得到有效保护;(4)气候变化影响下保护优先区选址将发生不同程度的变化,尤其是在中国南海区域,如在保护规划时兼顾气候速度,可在满足相似保护目标的前提下减少保护优先区内25%以上的气候压力,以使其具有较强的应对气候变化潜力。 相似文献
17.
18.
Alexandra S. Gardner Ilya M.D. Maclean Kevin J. Gaston 《Diversity & distributions》2019,25(8):1318-1333
19.
Jiban C. Deb Stuart Phinn Nathalie Butt Clive A. McAlpine 《Ecology and evolution》2017,7(7):2238-2248
Two ecologically and economically important, and threatened Dipterocarp trees Sal (Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono‐specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change‐driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence‐only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration. 相似文献