首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens’ method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity‐elevation, range‐elevation, and diversity‐range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100–6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000–5,000 m a.s.l. gradient (4,300 m a.s.l. for range‐elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high‐elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.  相似文献   

2.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

3.
Elevation is involved in determining plant diversity in montane ecosystems. This study examined whether the distribution of plants in the Yatsugatake Mountains, central Japan, substantiated hypotheses associated with an elevational diversity gradient. Species richness of trees, shrubs, herbs, ferns, and bryophytes was investigated in study plots established at 200‐m elevational intervals from 1,800 to 2,800 m. The changes in plant diversity (alpha and beta diversities, plant functional types, and elevational ranges) with elevation were analyzed in relation to climatic factors and elevational diversity gradient hypotheses, that is, mass effect, mid‐domain effect, and Rapoport''s elevational rule. In addition, the elevational patterns of dominance of plant functional types were also analyzed. A comparison of alpha and beta diversities revealed that different plant groups responded variably to elevation; the alpha diversity of trees and ferns decreased, that of herbs increased, whereas the alpha diversity of shrubs and bryophytes showed a U‐shaped relationship and a hump‐shaped pattern. The beta diversity of shrubs, herbs, and bryophytes increased above the subalpine–alpine ecotone. In accordance with these changes, the dominance of evergreen shrubs and graminoids increased above this ecotone, whereas that of evergreen trees and liverworts decreased. None of the plant groups showed a wide elevational range at higher elevations. These elevational patterns of plant groups were explained by climatic factors, and not by elevational diversity gradient hypotheses. Of note, the changes in the dominance of plant groups with elevation can be attributed to plant–plant interactions via competition for light and the changes in physical habitat. These interactions could alter the elevational diversity gradient shaped by climatic factors.  相似文献   

4.
Aim To document patterns in diversity, altitudinal range and body size of freshwater fishes along an elevational gradient in the Yangtze River basin. Location The Yangtze River basin, China. Methods We used published data to compile the distribution, altitudinal range and body size of freshwater fishes. Correlation, regression, clustering and graphical analyses were used to explore patterns in diversity, altitudinal range and body size of freshwater fishes in 100‐m elevation zones from 0 to 5200 m. Results Species richness patterns across the elevational gradient for total, non‐endemic and endemic fishes were different. The ratio of endemics to total richness peaked at mid elevation. Land area on a 500‐m interval scale explained a significant amount of the variation in species richness. Species density displayed two peaks at mid‐elevation zones. The cluster analysis revealed five distinct assemblages across the elevation gradient. The relationship between elevational range size and the midpoint of the elevational range revealed a triangular distribution. The frequency distribution of log maximum standard length data displayed an atypical right‐skewed pattern. Intermediate body sizes occurred across the greatest range of elevation while small and large body sizes possessed only small elevational amplitudes. The size‐elevation relationship between the two major families revealed a very strong pattern of body size constraint among the Cobitidae with no corresponding elevational constraint and a lot of body size and elevational diversification among the Cyprinidae. Main conclusion The data failed to support either Rapoport's rule or Bergmann's rule.  相似文献   

5.
The research about species richness pattern and elevational Rapoport's rule (ERR) have been carried out mostly in the temperate regions in the recent years and scarcely in the tropical mountains; meanwhile, it is unclear whether the ERR is consistent among different life‐forms and phytogeographic affinities. Here, we compiled a database of plant species of Mount Kenya, a tropical mountain of East Africa, and divided these species into twelve groups depending on the life‐form and phytogeographic affinity of each species. We inspected the species richness pattern of each group along the elevation gradient and also tested ERR of each group using Stevens' method. Our results showed that species richness of the total species showed a positively skewed (hump‐shaped) pattern along the elevation gradient and different life‐forms and phytogeographic affinities showed similar hump‐shaped patterns as the total species. The average elevation range size of the total species and herbaceous species showed increasing patterns along the elevation gradient, while lycophytes and ferns, and woody species showed an obvious downward trend after peaking in the high elevation regions. We concluded that the widely distributed herbaceous species which also have broad elevation range sizes are more applicable to ERR, while the narrowly distributed woody species with small elevation range sizes occurring in the higher elevations could reverse ERR. Therefore, we concluded that the ERR is not consistent among different organisms in the same region.  相似文献   

6.
7.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

8.
Exploring elevational patterns in species richness and their underlying mechanisms is a major goal in biogeography and community ecology. Reptiles can be powerful model organisms to examine biogeographical patterns. In this study, we examine the elevational patterns of reptile species richness and test a series of hypotheses that may explain them. We sampled reptile communities along a tropical elevational gradient (100–1,500 m a.s.l.) in the Western Ghats of India using time‐constrained visual encounter surveys at each 100‐m elevation zone for 3 years. First, we investigated species richness patterns across elevation and the support of mid‐domain effect and Rapoport's rule. Second, we tested whether a series of bioclimatic (temperature and tree density) and spatial (mid‐domain effect and area) hypotheses explained species richness. We used linear regression and AICc to compare competing models for all reptiles, and each of the subgroups: snakes, lizards, and Western Ghats’ endemics. Overall reptile richness and lizard richness both displayed linear declines with elevation, which was best explained by temperature. Snake richness and endemic species richness did not systematically vary across elevation, and none of the potential hypotheses explained variation in them. This is the first standardized sampling of reptiles along an elevational gradient in the Western Ghats, and our results agree with the global view that temperature is the primary driver of ectotherm species richness. By establishing strong reptile diversity–temperature associations across elevation, our study also has implications for the impact of future climate change on range‐restricted species in the Western Ghats.  相似文献   

9.
Aim We addressed the following questions: (1) Does tephritid body size tend to increase in species found at higher elevations, as predicted by Bergmann's rule? (2) Do tephritids conform to Rapoport's rule, so that species found at higher elevations tend to have broader altitudinal ranges? (3) More generally, how do body size and host range jointly affect the patterns of altitudinal distribution among Neotropical tephritid flies? Location The Mantiqueira mountain range, south‐eastern Brazil, at sites ranging from c. 700 to 2500 m a.s.l. Methods At each site we collected flower heads of all Asteraceae species to rear out endophagous immatures (from January to June in 1998 and 1999). We used structural equation models (SEM) to evaluate jointly the relationships between body size, host range and altitudinal distribution (range and mid‐point). Results Neotropical tephritid body size showed a negative relationship with altitudinal distribution. SE modelling showed no significant direct effect of body size on altitudinal range; however, it had significant indirect negative effects through host range and altitudinal mid‐point. The SE model was a good predictor of observed correlations and accounted for 84% of the variation in tephritid altitudinal range. Main conclusions The altitudinal range of flower‐head‐feeding tephritids is related to host range and is indirectly affected by body size via host range and altitudinal mid‐point. As predicted by Rapoport's rule, tephritids that occur at higher elevations also present wider altitudinal ranges. Bergmann's rule does not apply to Neotropical tephritids along a tropical elevational gradient, but rather its converse was found. Body size may determine host range by imposing a restriction upon large individuals using small flower heads. Host species turnover along the altitudinal gradient may be the main factor explaining the strong relationship between host range and insect elevational distribution.  相似文献   

10.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

11.
物种多度与分布幅之间的正相关被认为是一种普遍的规律。但近年在热带山地和岛屿的研究发现多度-分布幅关系会出现不相关或负相关的现象;该现象可能是由于当地多度高且分布幅小的特有种比例较高所导致。在喜马拉雅山东段的勒布沟沿海拔2350—4950 m开展研究:1)记录了当地鸟类多度垂直分布格局;2)验证了该区繁殖鸟总体多度-垂直分布幅关系,并对比了特有种和非特有种分组子集多度-垂直分布幅关系、平均多度和垂直分布中心的差异。研究发现勒布沟鸟类多度垂直分布格局为驼峰格局。该区繁殖鸟类与非特有种的多度-垂直分布幅关系均为正相关,但特有种的多度-垂直分布幅关系为不相关。特有种的多度及海拔分布中心位置均高于非特有种。结果表明区域的鸟类特有性对多度-垂直分布幅关系存在着重要的影响;地理隔离导致的区域物种组成差异,是造成多度-分布幅关系模式变化的重要原因之一。  相似文献   

12.
Macroecology strives to identify ecological patterns on broad spatial and temporal scales. One such pattern, Rapoport''s rule, describes the tendency of species'' latitudinal ranges to increase with increasing latitude. Several mechanisms have been proposed to explain this rule. Some invoke climate, either through glaciation driving differential extinction of northern species or through increased seasonal variability at higher latitudes causing higher thermal tolerances and subsequently larger ranges. Alternatively, continental tapering or higher interspecific competition at lower latitudes may be responsible. Assessing the incidence of Rapoport''s rule through deep time can help to distinguish between competing explanations. Using fossil occurrence data from the Palaeobiology Database, we test these hypotheses by evaluating mammalian compliance with the rule throughout the Caenozoic of North America. Adherence to Rapoport''s rule primarily coincides with periods of intense cooling and increased seasonality, suggesting that extinctions caused by changing climate may have played an important role in erecting the latitudinal gradients in range sizes seen today.  相似文献   

13.
Luo Z  Tang S  Li C  Chen J  Fang H  Jiang Z 《PloS one》2011,6(11):e27975

Background

Explaining species range size pattern is a central issue in biogeography and macroecology. Although several hypotheses have been proposed, the causes and processes underlying range size patterns are still not clearly understood. In this study, we documented the latitudinal mean range size patterns of terrestrial mammals in China, and evaluated whether that pattern conformed to the predictions of the Rapoport''s rule several analytical methods. We also assessed the influence of the mid-domain effect (MDE) and environmental factors on the documented range size gradient.

Methodology/Principal Findings

Distributions of 515 terrestrial mammals and data on nine environmental variables were compiled. We calculated mean range size of the species in each 5° latitudinal band, and created a range size map on a 100 km×100 km quadrat system. We evaluated Rapoport''s rule according to Steven''s, mid-point, Pagel''s and cross-species methods. The effect of the MDE was tested based on a Monte Carlo simulation and linear regression. We used stepwise generalized linear models and correlation analyses to detect the impacts of mean climate condition, climate variability, ambient energy and topography on range size. The results of the Steven''s, Pagel''s and cross-species methods supported Rapoport''s rule, whereas the mid-point method resulted in a hump-shaped pattern. Our range size map showed that larger mean latitudinal extents emerged in the mid-latitudes. We found that the MDE explained 80.2% of the range size variation, whereas, environmental factors accounted for <30% of that variation.

Conclusions/Significance

Latitudinal range size pattern of terrestrial mammals in China supported Rapoport''s rule, though the extent of that support was strongly influenced by methodology. The critical factor underlying the observed gradient was the MDE, and the effects of climate, energy and topography were limited. The mean climate condition hypothesis, climate variability hypothesis, ambient energy hypotheses and topographical heterogeneity hypotheses were not supported.  相似文献   

14.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

15.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

16.
Use of β-diversity indices in the study of spatial distribution of species diversity is hampered by the difficulty of applying significance tests. To overcome this problem we used a simulation approach in a study of species turnover of ferns, aroids, bromeliads, and melastomes along an elevational gradient from 1700 m to 3400 m in a species-rich tropical cloud forest of Bolivia. Three parameters of species turnover (number of upper/lower elevational species limits per elevational step, Wilson–Shmida similarity index between adjacent steps) were analysed. Significant species turnover limits were detected at 2000 (± 50) m and 3050 m, which roughly coincided with the elevational limits of the main vegetation types recognized in the study area. The taxon specificity of elevational distributions implies that no single plant group can be used as a reliable surrogate for overall plant diversity and that the response to future climate change will be taxon-specific, potentially leading to the formation of plant communities lacking modern analogues. Mean elevational range size of plant species was 490 m (± 369). Elevational range sizes of terrestrial species were shorter than those of epiphytes. We conclude that our simulation approach provides an alternative approach for assessing the statistical significance of levels of species turnover along ecological gradient without the limitations imposed by traditional statistical approaches.  相似文献   

17.
Aim To assess the relationship between species richness and distribution within regions arranged along a latitudinal gradient we use the North American mammalian fauna as a study case for testing theoretical models. Location North America. Methods We propose a conceptual framework based on a fully stochastic mid‐domain model to explore geographical patterns of range size and species richness that emerge when the size and position of species ranges along a one‐dimensional latitudinal gradient are randomly generated. We also analyse patterns for the mammal fauna of North America by comparing empirical results from a biogeographical data base with predictions based on randomization null models. Results We confirmed the validity of Rapoport's rule for the mammals of North America by documenting gradients in the size of the continental ranges of species. Additionally, we demonstrated gradients of mean regional range size that parallel those of continental range. Our data also demonstrated that mean range size, measured both as a continental or a regional variable, is significantly correlated with the geographical pattern in species richness. All these patterns deviated sharply from null models. Main conclusions Rapoport's statement of an areographic relationship between species distribution and richness is highly relevant in modern discussions about ecological patterns at the geographical scale.  相似文献   

18.
Popp  Manuel R.  Kalwij  Jesse M. 《Plant Ecology》2021,222(4):421-432

Montane ecosystems are more prone to invasions by exotic plant species than previously thought. Besides abiotic factors, such as climate and soil properties, plant-plant interactions within communities are likely to affect the performance of potential invaders in their exotic range. The biotic resistance hypothesis predicts that high indigenous species richness hampers plant invasions. The biotic acceptance hypothesis, on the other hand, predicts a positive relationship between indigenous and exotic species richness. We tested these two hypotheses using observational data along an elevational gradient in a southern African biodiversity hotspot. Species composition data of indigenous and exotic plants were recorded in 20 road verge plots along a gradient of 1775–2775 m a.s.l. in the Drakensberg, South Africa. Plots were 2?×?50 m in size and positioned at 50 m elevational intervals. We found a negative correlation between indigenous and exotic richness for locations with poorly developed mineral soils, suggesting biotic resistance through competitive interactions. A strong positive correlation for plots with very shallow soils at high elevations indicated a lack of biotic resistance and the possibility of facilitating interactions in harsher environments. These results suggest that biotic resistance is restricted to the lower and mid elevations while biotic acceptance prevails in presence of severe abiotic stress, potentially increasing the risk of plant invasions into montane biodiversity hotspots.

  相似文献   

19.
Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species that do not rely on help from other plants during their life cycle and to the fact the cushions do not provide a better microhabitat to grow in.  相似文献   

20.
There has been a recent resurgence of interest in documenting and explaining patterns of species' range sizes with the goal of determining if general patterns exist. Much recent debate has centered on whether Rapoport's rule, the tendency for range size to increase with increasing latitude, is a general rule or a local effect. I calculated the sizes of turtle species ranges from distribution maps and used published natural history data to examine how range size varies with latitude, and to determine if differences in range size exist among continents, and if correlations with body size, available land area, habitat and diet breadth exist. The distribution of turtle range sizes extended over six orders of magnitude and formed a lognormal distribution with many species having moderate or small ranges and few species having large ranges. Range size was positively correlated with available land area, habitat breadth, diet breadth, and body size. Multiple regression accounted for only 39% of the variance in range size indicating that other important factors remain unknown. At both global and continental scales, range size is largest near the equator and decreases with increasing latitude, the apposite of Rapoport's rule. However, range size did increase latitudinally above 25-30°N in both the Neararctic and Palearctic suggesting that the pattern would be more accurately considered a local effect than a general rule. Larger range sizes at low latitudes may occur because more land area in the tropics provides much suitable habitat for ectotherms and there are few large scale physical barriers to dispersal. Rapoport patterns result from the occurrence of a small number of wide-ranging cold tolerant species that have reinvaded northern latitudes after Pleistocene glaciation. Patterns of the longitudinal and latitudinal extents of species ranges and their positions illustrate the importance of climate, mountain ranges, deserts, and coastlines, as barriers potentially affecting range size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号