首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of biologging and tracking devices is widespread in avian behavioral and ecological studies. Carrying these devices rarely has major behavioral or fitness effects in the wild, yet it may still impact animals in more subtle ways, such as during high power demanding escape maneuvers. Here, we tested whether or not great tits (Parus major) carrying a backpack radio‐tag changed their body mass or flight behavior over time to compensate for the detrimental effect of carrying a tag. We tested 18 great tits, randomly assigned to a control (untagged) or one of two different types of a radio‐tag as used in previous studies in the wild (0.9 g or 1.2 g; ~5% or ~6–7% of body mass, respectively), and determined their upward escape‐flight performance 1, 7, 14, and 28 days after tagging. In between experiments, birds were housed in large free‐flight aviaries. For each escape‐flight, we used high‐speed 3D videography to determine flight paths, escape‐flight speed, wingbeat frequency, and actuator disk loading (ratio between the bird weight and aerodynamic thrust production capacity). Tagged birds flew upward with lower escape‐flight speeds, caused by an increased actuator disk loading. During the 28‐day period, all groups slightly increased their body mass and their in‐flight wingbeat frequency. In addition, during this period, all groups of birds increased their escape‐flight speed, but tagged birds did so at a lower rate than untagged birds. This suggests that birds may increase their escape‐flight performance through skill learning; however, tagged birds still remained slower than controls. Our findings suggest that tagging a songbird can have a prolonged effect on the performance of rapid flight maneuvers. Given the absence of tag effects on reproduction and survival in most songbird radio‐tagging studies, tagged birds in the wild might adjust their risk‐taking behavior to avoid performing rapid flight maneuvers.  相似文献   

2.
Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species.  相似文献   

3.
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient''s prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).  相似文献   

4.
ABSTRACT Banding penguins is controversial because bands can alter the survival, reproduction, and behavior of marked individuals. The effects of bands are not consistent among band types and, although stainless steel is thought to be better than other materials, tests of the long‐term impact of bands on tag‐loss rates and the reproduction and survival of individuals are needed. We tested three types of external tags on Magellanic Penguins (Spheniscus magellanicus) to measure band effects and tag‐loss rates. In 1993, we double‐tagged 300 penguins with aluminum flipper bands, stainless‐steel flipper bands, or small (2 mm × 10 mm) metal tags attached to foot webbing. We searched for double‐tagged birds for 13 of 15 yrs (1994–2008). Aluminum bands deformed, caused feather wear, injured and killed some penguins, and were lost more often than stainless‐steel bands or web tags. During the first 2 yrs of our study, at least nine penguins lost one aluminum band (N= 71 penguins resighted), but no penguins lost a stainless‐steel band (N= 84) or a web tag (N= 88). During the next 13 yrs, five penguins lost one of their two web tags (N= 89), but none lost a stainless‐steel band (N= 84). Females laid eggs of similar size before they carried a band and in the year following tagging (P= 0.09). The type of tags a female carried did not significantly change egg size (P > 0.22). During the first breeding season after tagging, penguins with aluminum bands had lower reproductive success than penguins with stainless‐steel bands or web‐tags (P= 0.04). The annual survival of females with two stainless‐steel bands was lower (0.79) than that of males with two stainless‐steel bands or males and females with two web‐tags (0.87). Aluminum bands injured Magellanic Penguins, were lost at high rates, and should not be used. Double stainless‐steel bands had no apparent effects on adult male Magellanic Penguins, but reduced survival rates of adult females. A single stainless‐steel band would likely have less impact than two bands, and our results suggest that the impact of a single band would be difficult to measure.  相似文献   

5.
Ecological research is often hampered by the inability to quantify animal diets. Diet composition can be tracked through DNA metabarcoding of fecal samples, but whether (complex) diets can be quantitatively determined with metabarcoding is still debated and needs validation using free‐living animals. This study validates that DNA metabarcoding of feces can retrieve actual ingested taxa, and most importantly, that read numbers retrieved from sequencing can also be used to quantify the relative biomass of dietary taxa. Validation was done with the hole‐nesting insectivorous Pied Flycatcher whose diet was quantified using camera footage. Size‐adjusted counts of food items delivered to nestlings were used as a proxy for provided biomass of prey orders and families, and subsequently, nestling feces were assessed through DNA metabarcoding. To explore potential effects of digestion, gizzard and lower intestine samples of freshly collected birds were subjected to DNA metabarcoding. For metabarcoding with Cytochrome Oxidase subunit I (COI), we modified published invertebrate COI primers LCO1490 and HCO1777, which reduced host reads to 0.03%, and amplified Arachnida DNA without significant changing the recovery of other arthropod taxa. DNA metabarcoding retrieved all commonly camera‐recorded taxa. Overall, and in each replicate year (N = 3), the relative scaled biomass of prey taxa and COI read numbers correlated at R = .85 (95CI:0.68–0.94) at order level and at R = .75 (CI:0.67–0.82) at family level. Similarity in arthropod community composition between gizzard and intestines suggested limited digestive bias. This DNA metabarcoding validation demonstrates that quantitative analyses of arthropod diet is possible. We discuss the ecological applications for insectivorous birds.  相似文献   

6.
Longevity is highly variable among animal species and has coevolved with other life‐history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life‐history traits independent of body size are largely underexplored for birds. To test associations of life‐history traits and telomere dynamics, we conducted a phylogenetic meta‐analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life‐history traits. We examined 3 principal components of 12 life‐history variables that represented: body size (PC1), the slow–fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small‐to‐medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life‐history variables. TROC, however, was negatively and moderate‐to‐strongly associated with PC2 (unadjusted r = −.340; with phylogenetic correction, r = −.490). Independent of body size, long‐lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian‐related species, yet telomere dynamics are strongly linked to the pace of life.  相似文献   

7.
Birds are known to act as potential vectors for the exogenous dispersal of bryophyte diaspores. Given the totipotency of vegetative tissue of many bryophytes, birds could also contribute to endozoochorous bryophyte dispersal. Research has shown that fecal samples of the upland goose (Chloephaga picta) and white‐bellied seedsnipe (Attagis malouinus) contain bryophyte fragments. Although few fragments from bird feces have been known to regenerate, the evidence for the viability of diaspores following passage through the bird intestinal tract remains ambiguous. We evaluated the role of endozoochory in these same herbivorous and sympatric bird species in sub‐Antarctic Chile. We hypothesized that fragments of bryophyte gametophytes retrieved from their feces are viable and capable of regenerating new plant tissue. Eleven feces disk samples containing undetermined moss fragments from C. picta (N = 6) and A. malouinus (N = 5) and six moss fragment samples from wild‐collected mosses (Conostomum tetragonum, Syntrichia robusta, and Polytrichum strictum) were grown ex situ in peat soil and in vitro using a agar Gamborg medium. After 91 days, 20% of fragments from A. malouinus feces, 50% of fragments from C. picta feces, and 67% of propagules from wild mosses produced new growth. The fact that moss diaspores remained viable and can regenerate under experimental conditions following the passage through the intestinal tracts of these robust fliers and altitudinal and latitudinal migrants suggests that sub‐Antarctic birds might play a role in bryophyte dispersal. This relationship may have important implications in the way bryophytes disperse and colonize habitats facing climate change.  相似文献   

8.
Rapid advances in genomic tools for use in ecological contexts and non‐model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high‐throughput sequencing on chicken (Gallus gallus domesticus) tissues collected over an 11‐day decomposition study in natural Hawaiian habitats. Second, we determined if field‐collected invasive black rats (Rattus rattus; n = 51, stomach and fecal samples) had consumed birds using molecular diet analysis with two independent PCR assays (mitochondrial Cytochrome Oxidase I and Cytochrome b genes) and Sanger sequencing. Third, we characterized the gut microbiome of the same rats using 16S rRNA high‐throughput sequencing and identified 15 bacterial taxa that were (a) detected only in rats that consumed birds (n = 20/51) and (b) were indicative of decaying tissue in the chicken decomposition experiment. We found that 18% of rats (n = 9/51) likely consumed birds as carrion by the presence of bacterial biomarkers of decayed tissue in their gut microbiome. One species of native bird (Myadestes obscurus) and three introduced bird species (Lophura leucomelanos, Meleagris gallopavo, Zosterops japonicus) were detected in the rats’ diets, with individuals from these species (except L. nycthemera) likely consumed through scavenging. Bacterial biomarkers of bird carcass decay can persist through rat digestion and may serve as biomarkers of scavenging. Our approach can be used to reveal trophic interactions that are challenging to measure through direct observation.  相似文献   

9.
Incubating birds must balance the needs of their developing embryos with their own physiological needs, and many birds accomplish this by taking periodic breaks from incubation. Mallard (Anas platyrhynchos) and gadwall (Mareca strepera) hens typically take incubation recesses in the early morning and late afternoon, but recesses can also take place at night. We examined nocturnal incubation recess behavior for mallard and gadwall hens nesting in Suisun Marsh, California, USA, using iButton temperature dataloggers and continuous video monitoring at nests. Fourteen percent of all detected incubation recesses (N = 13,708) were nocturnal and took place on 20% of nest‐days (N = 8,668). Video monitoring showed that hens covered their eggs with down feathers when they initiated a nocturnal recess themselves as they would a diurnal recess, but they left the eggs uncovered in 94% of the nocturnal recesses in which predators appeared at nests. Thus, determining whether or not eggs were left uncovered during a recess can provide strong indication whether the recess was initiated by the hen (eggs covered) or a predator (eggs uncovered). Because nest temperature decreased more rapidly when eggs were left uncovered versus covered, we were able to characterize eggs during nocturnal incubation recesses as covered or uncovered using nest temperature data. Overall, we predicted that 75% of nocturnal recesses were hen‐initiated recesses (eggs covered) whereas 25% of nocturnal recesses were predator‐initiated recesses (eggs uncovered). Of the predator‐initiated nocturnal recesses, 56% were accompanied by evidence of depredation at the nest during the subsequent nest monitoring visit. Hen‐initiated nocturnal recesses began later in the night (closer to morning) and were shorter than predator‐initiated nocturnal recesses. Our results indicate that nocturnal incubation recesses occur regularly (14% of all recesses) and, similar to diurnal recesses, most nocturnal recesses (75%) are initiated by the hen rather than an approaching predator.  相似文献   

10.
Prior to the introduction of white‐nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS‐affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT‐tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from −1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small‐footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid‐hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid‐hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium–high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid‐hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species‐specific conservation actions.  相似文献   

11.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

12.
Innovative tools that benefit conservation are critical as freshwater fishes are lost at unprecedented rates. Mark-recapture methods can characterize population demographics and life-history traits of diverse fishes, but suitable techniques for tagging for individual recognition of small-bodied fishes are rare. Passive integrated transponder (PIT) tag technology may facilitate the tagging of small fishes and early life stages of larger species. However, relatively little research has evaluated the suitability of these small (8.4 × 1.4 mm) tags for many groups of small fishes. Tag loss (retention and survival) and growth of individuals implanted with PIT tags relative to control and sham treatments were compared for eight fishes of differing morphologies. Additionally, the utility of cyanoacrylate to improve tag retention was tested on a subset of taxa. Fish of each species were equally divided and randomly assigned to one of three treatment groups (handled [control], surgical incision [sham], or surgical incision and PIT tag implantation [PIT]). During the 42-d study period, mortalities and expelled tags were counted daily and growth was measured weekly. Researchers can generally expect little tag loss and uncompromised growth rates for a variety of small-bodied fishes; however, initial fish length was related to the magnitude of physiological effects for some taxa (i.e., blacknose dace Rhinichthys atratulus, johnny darter Etheostoma nigrum, juvenile white sucker Catostomus commersonii). Relatively poor survival (<80%) was observed for two benthic species: johnny darter and blacknose dace, often when incision wounds became inflamed before healing. Prevalent tag loss for johnny darter, tadpole madtom Noturus gyrinus, and a dorsal-laterally compressed cyprinid can be reduced by closing the wounds with cyanoacrylate, but with substantially increased mortality rates. This research demonstrates the broad applicability of PIT tagging technology for ecological studies of small-bodied fishes and alleviates many concerns when surgically implanting tags into several fishes.  相似文献   

13.
14.
Nest material kleptoparasitism likely evolved in birds to reduce the cost of searching for and collecting material themselves. Although nest material kleptoparasitism has been reported commonly in colonially nesting species, reports for solitary breeding species are infrequent, especially for neotropical migratory species. Here, we report potential and actual nest material kleptoparasitism in the Worm‐eating Warbler (Helmitheros vermivorum). We deployed video camera systems at passerine nests (n = 81) in east‐central Arkansas during summers 2011–2012. In one video, we observed a Worm‐eating Warbler stealing nesting material from a Hooded Warbler (Setophaga citrina) nest. One day later, we later observed a Worm‐eating Warbler landing within 0.5 m of the same warbler nest when the female was incubating, which possibly deterred a second theft of nesting material. In a third video recording, we observed another Worm‐eating Warbler landing within 1 m of an Indigo Bunting (Passerina cyanea) nest. As far as we could determine, neither of these latter two nest visits resulted in nest material kleptoparasitism. Potential benefits of nest material kleptoparasitism include reduced competition for limited nest materials, easy access to suitable material, reduced travel distance, and reduction of nest predation risk; however, costs include risk of attack by host or introducing parasites to one''s nest. Importantly, this behavior could ultimately affect the behavioral and life history evolution of a species. We suggest further work should be conducted to determine the prevalence of nest material kleptoparasitism in Worm‐eating Warblers and other solitary breeding passerines, including efforts to quantify the benefits and costs of this behavior.  相似文献   

15.
Treatment of multiple malignant solid tumours with programmed death (PD)‐1/PD ligand (PD‐L) 1 inhibitors has been reported. However, the efficacy and immune adverse effects of combination therapies are controversial. This meta‐analysis was performed with PubMed, Web of Science, Medline, EMBASE and Cochrane Library from their inception until January 2020. Random‐effect model was adopted because of relatively high heterogeneity. We also calculated hazard ratio (HR) of progression‐free survival (PFS), overall survival (OS) and risk ratio (RR) of adverse events (AEs), the incidence of grade 3‐5 AEs by tumour subgroup, therapeutic schedules and therapy lines. Nineteen articles were selected using the search strategy for meta‐analysis. Combined PD‐1/PD‐L1 inhibitors prolonged OS and PFS (HR 0.72, P < 0.001) and (HR 0.66, P < 0.001). In addition, incidence of all‐grade and grade 3‐5 AEs was not significant in the two subgroup analyses (HR 1.01, P = 0.31) and (HR 1.10, P = 0.07), respectively. Our meta‐analysis indicated that combination therapy with PD‐1/PD‐L1 inhibitors had greater clinical benefits and adverse events were not increased significantly.  相似文献   

16.
  1. Satellite tracking of animals is very widespread across a range of marine, freshwater, and terrestrial taxa. Despite the high cost of tags and the advantages of long deployments, the reasons why tracking data from tags stop being received are rarely considered, but possibilities include shedding of the tag, damage to the tag (e.g., the aerial), biofouling, battery exhaustion, or animal mortality.
  2. We show how information relayed via satellite tags can be used to assess why tracking data stop being received. As a case study to illustrate general approaches that are broadly applicable across taxa, we examined data from Fastloc‐GPS Argos tags deployed between 2012 and 2019 on 78 sea turtles of two species, the green turtle (Chelonia mydas) and the hawksbill turtle (Eretmochelys imbricata).
  3. Tags transmitted for a mean of 267 days (SD = 113 days, range: 26–687 days, median = 251 days). In 68 of 78 (87%) cases, battery failure was implicated as the reason why tracking data stopped being received. Some biofouling of the saltwater switches, which synchronize transmissions with surfacing, was evident in a few tags but never appeared to be the reason that data reception ceased.
  4. Objectively assessing why tags fail will direct improvements to tag design, setup, and deployment regardless of the study taxa. Assessing why satellite tags stop transmitting will also inform on the fate of tagged animals, for example, whether they are alive or dead at the end of the study, which may allow improved estimates of survival rates.
  相似文献   

17.
Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population‐specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96–1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62–0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64–0.93) and first‐year cub survival was 0.33 (95% CI: 0.11–0.67). Reproductive rates did not differ between populations. The large differences in age‐specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04–1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72–0.95). Low female survival in the smaller population was the result of both continued human‐caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging.  相似文献   

18.
Rodents often act as important hosts for ticks and as pathogen reservoirs. At northern latitudes, rodents often undergo multi‐annual population cycles, and the periodic absence of certain hosts may inhibit the survival and recruitment of ticks. We investigated the potential role of common shrews (Sorex araneus) to serve as a supplementary host source to immature life stages (larvae and nymphs) of a generalist tick Ixodes ricinus and a small mammal specialist tick Itrianguliceps, during decreasing abundances of bank voles (Myodes glareolus). We used generalized mixed models to test whether ticks would have a propensity to parasitize a certain host species dependent on host population size and host population composition across two high‐latitude gradients in southern Norway, by comparing tick burdens on trapped animals. Host population size was defined as the total number of captured animals and host population composition as the proportion of voles to shrews. We found that a larger proportion of voles in the host population favored the parasitism of voles by Iricinus larvae (estimate = −1.923, p = .039) but not by nymphs (estimate = −0.307, p = .772). Itrianguliceps larvae did not show a lower propensity to parasitize voles, regardless of host population composition (estimate = 0.875, p = .180), while nymphs parasitized shrews significantly more as vole abundance increased (estimate = 2.106, p = .002). These results indicate that common shrews may have the potential to act as a replacement host during periods of low rodent availability, but long‐term observations encompassing complete rodent cycles may determine whether shrews are able to maintain tick range expansion despite low rodent availability.  相似文献   

19.
The phosphorylated neurofilament heavy chain (pNfH) is a promising biomarker in amyotrophic lateral sclerosis (ALS). We examined plasma pNfH concentrations in order to corroborate its role as a diagnostic and prognostic biomarker in ALS. Incident ALS cases enrolled in a population‐based registry were retrospectively selected and matched by sex and age with a cohort of healthy volunteers. Plasma pNfH levels were measured by an ELISA kit and correlated with clinical parameters. Discrimination ability of pNfH was tested using receiving operating characteristic (ROC) curves. Kaplan–Meier (KM) analysis and Cox proportional hazard models were used for survival analysis. Plasma pNfH was significantly higher in patients compared to controls. An optimal cut‐off of 39.74 pg/ml discriminated cases from controls with an elevated sensitivity and specificity. Bulbar‐onset cases had higher plasma pNfH compared to spinal onset (p = 0.0033). Furthermore, plasma pNfH positively correlated with disease progression rate (r = 0.19, p = 0.031). Baseline plasma pNfH did not influence survival in our cohort. Our findings confirmed the potential utility of plasma pNfH as a diagnostic biomarker in ALS. However, further studies with longitudinal data are needed to corroborate its prognostic value.  相似文献   

20.
Observational studies have revealed associations between short leucocyte telomere length (LTL), a TL marker in somatic tissues and multiple Metabolic Syndrome (MetS) traits. Animal studies have supported these findings by showing that increased telomere attrition leads to adipose tissue dysfunction and insulin resistance. We investigated the associations between genetically instrumented LTL and MetS traits using Mendelian Randomisation (MR). Fifty‐two independent variants identified at FDR<0.05 from a genome‐wide association study (GWAS) including 78,592 Europeans and collectively accounting for 2.93% of LTL variance were selected as genetic instruments for LTL. Summary‐level data for MetS traits and for the MetS as a binary phenotype were obtained from the largest publicly available GWAS and two‐sample MR analyses were used to estimate the associations of LTL with these traits. The combined effect of the genetic instruments was modelled using inverse variance weighted regression and sensitivity analyses with MR‐Egger, weighted‐median and MR‐PRESSO were performed to test for and correct horizonal pleiotropy. Genetically instrumented longer LTL was associated with higher waist‐to‐hip ratio adjusted for body mass index (β = 0.045 SD, SE = 0.018, p = 0.01), raised systolic (β = 1.529 mmHg, SE = 0.332, p = 4x10−6) and diastolic (β = 0.633 mmHg, SE = 0.222, p = 0.004) blood pressure, and increased MetS risk (OR = 1.133, 95% CI 1.057–1.215). Consistent results were obtained in sensitivity analyses, which provided no evidence of unbalanced horizontal pleiotropy. Telomere shortening might not be a major driver of cellular senescence and dysfunction in human adipose tissue. Future experimental studies should examine the mechanistic bases for the links between longer LTL and increased upper‐body fat distribution and raised blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号