首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

2.
  1. Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors.
  2. To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector‐borne viral plant pathogen, Barley Yellow Dwarf Virus PAV (BYDV‐PAV) into hosts, vectors, and host nutrient supplies that it had not encountered for thousands of viral generations. We quantified pathogen prevalence over the course of two serial inoculations under the new conditions. Using individual‐level transmission rates from this experiment, we parameterized a dynamical model of disease spread and projected spread across host populations through a growing season.
  3. A change in nutrient conditions (increased supply of phosphorus) reduced viral transmission whereas shifting to a new vector or host species had no effect on infection prevalence. However, the reduction in the new nutrient environment was only temporary; infection prevalence recovered after the second inoculation.
  4. Synthesis. These results highlight how robust the pathogen, BYDV‐PAV, is to changes in its biotic and abiotic environment. Our study also highlights the need to quantify longitudinal infection information beyond snapshot assessments to project disease risk for pathogens in new environments.
  相似文献   

3.
The yellow dwarf (YD) disease complex epidemics in cultivated cereals grown in a specific period of the year mainly depend on the presence of potential reservoir alternative hosts harbouring both the viruses and the vectors over the off‐season and serve as a source of inoculum in subsequent cropping season, further spread being supported by efficient aphid vectors. As such, an extensive and intensive exploration to generate base line information on the identity and prevalence of YD viruses [barley yellow dwarf virus (BYDV)‐PAV, BYDV‐MAV and BYDV‐SGV; cereal yellow dwarf virus (CYDV)‐RPV; and maize yellow dwarf virus (MYDV)‐RMV] on wild annual and perennial grasses and forage cereals alternative hosts was conducted consecutively during 2013–2015 main‐ and short‐rainy seasons in cereals growing belts of Ethiopia. Random sampling was employed to collect the samples that were tested by the tissue blot immunoassay (TBIA) to identify the YDVs associated with the hosts using a battery of virus‐specific polyclonal antibodies. Of 13,604 samples analysed, YDVs were detected in 392 (2.9%) samples, which consisted of various wild grasses, forage cereals and three cultivated crops. YDVs were identified from at least 26 grass species and forage cereals, some of them are new records, and some are previously documented hosts. To our knowledge, this is the first report of YDV infection of Andropogon abyssinicus (FresenR.Br. ex Fresen.) (BYDV‐PAV), Avena abyssinica Hochst (BYDV‐PAV), Bromus pectinatus Thunb. (BYDV‐PAV and BYDV‐MAV), Eragrostis tef (Zuccagni) Trotter (BYDV‐PAV), Eragrostis sp. (BYDV‐PAV), Hyparrhenia anthistrioides Stapf. (BYDV‐PAV), Panicum coloratum L. (BYDV‐PAV), Polypogon monspeliensis (L.) Desf. (BYDV‐PAV), Setaria pumila (Poir.) Roem & Schult (BYDV‐PAV, BYDV‐SGV and MYDV‐RMV), Setaria australiensis (Scribn. & Merrill) Vickery (BYDV‐PAV, BYDV‐MAV and CYDV‐RPV) and Snowdenia polystachya (Fresen.) Pilg (BYDV‐PAV, BYDV‐MAV, BYDV‐SGV, CYDV‐RPV and MYDV‐RMV).  相似文献   

4.
The host‐associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon‐based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co‐occurrence networks; and (3) co‐occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti‐Bd bacteria were not broadly negatively co‐associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.  相似文献   

5.
The influenza virus mutates and spreads rapidly, making it suitable for studying evolutionary and ecological processes. The ecological factors and processes by which different lineages of influenza compete or coexist within hosts through time and across geographical space are poorly known. We hypothesized that competition would be stronger for influenza viruses infecting the same host compared to different hosts (the Host Barrier Hypothesis), and for those with a higher cross‐region transmission intensity (the Geographic Barrier Hypothesis). Using available sequences of the influenza A (H1N1) virus in GenBank, we identified six lineages, twelve clades, and several replacement events. We found that human‐hosted lineages had a higher cross‐region transmission intensity than swine‐hosted lineages. Co‐occurrence probabilities of lineages infecting the same host were lower than those infecting different hosts, and human‐hosted lineages had lower co‐occurrence probabilities and genetic diversity than swine‐hosted lineages. These results show that H1N1 lineages infecting the same host or with high cross‐region transmission rates experienced stronger competition and extinction pressures than those infecting different hosts or with low cross‐region transmission. Our study highlights how host and geographic barriers shape the competition, extinction, and coexistence patterns of H1N1 lineages and clades.  相似文献   

6.
Host–symbiont relationships in hydrothermal vent ecosystems, supported by chemoautotrophic bacteria as primary producers, have been extensively studied. However, the process by which densely populated co‐occurring invertebrate hosts form symbiotic relationships with bacterial symbionts remains unclear. Here, we analyzed gill‐associated symbiotic bacteria (gill symbionts) of five co‐occurring hosts, three mollusks (“Bathymodiolusmanusensis, B. brevior, and Alviniconcha strummeri) and two crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a single vent site in the Tonga Arc. We observed both different compositions of gill symbionts and the presence of unshared operational taxonomic units (OTUs). In addition, the total number of OTUs was greater for crustacean hosts than for mollusks. The phylogenetic relationship trees of gill symbionts suggest that γ‐proteobacterial gill symbionts have coevolved with their hosts toward reinforcement of host specificity, while campylobacterial Sulfurovum species found across various hosts and habitats are opportunistic associates. Our results confirm that gill symbiont communities differ among co‐occurring vent invertebrates and indicate that hosts are closely related with their gill symbiont communities. Considering the given resources available at a single site, differentiation of gill symbionts seems to be a useful strategy for obtaining nutrition and energy while avoiding competition among both hosts and gill symbionts.  相似文献   

7.
Infection by pathogens is strongly affected by the diet or condition of the prospective host. Studies that examine the impact of diet have mainly focused on single pathogens; however, co‐infections within a single host are thought to be common. Different pathogen groups might respond differently to resource availability and diverse infections could increase the costs of host defense, meaning the outcome of mixed infections under varying dietary regimes is likely to be hard to predict. We used the generalist cabbage looper, Trichoplusia ni and two of its pathogens, the DNA virus Tni nucleopolyhedrovirus (TniSNPV) and the entomopathogenic fungus, Beauveria bassiana to examine how nutrient reduction affected the outcome of mixed pathogen infection. We challenged insects with a low or high effective dose of virus, alone or combined with a single dose of fungus. We manipulated food availability after pathogen challenge by diluting artificial diet with cellulose, a non‐nutritious bulking agent, and examined its impact on host and pathogen fitness. Reducing diet quantity did not alter overall or pathogen‐specific mortality. In all cases, TniSNPV‐induced mortality was negatively affected by fungus challenge. Similarly, Bbassiana‐induced mortality was negatively affected by TniSNPV challenge, but only at the higher virus dose. Dietary dilution mainly affected Bbassiana speed of kill when mixed with a high dose of TniSNPV, with an increase in the duration of fungal infection when cellulose was low (high quantity). One pathogen dominated the production of transmission stages in the cadavers and co‐infection did not affect the yield of either pathogen. There was no evidence that co‐infections were more costly to the survivors of pathogen challenge. In conclusion, dietary dilution did not determine the outcome of mixed pathogen infection, but it had more subtle effects, that differed between the two pathogens and could potentially alter pathogen recycling and host–pathogen dynamics.  相似文献   

8.
Enzyme-linked immunosorbent assay (ELISA)-based surveys of the occurrence of five barley yellow dwarf virus (BYDV) serotypes (MAV, PAV and SGV in “Group 1”; RPV and RMV in “Group 2”) in CIMMYT bread wheat nurseries and other small grain crops in various locations world-wide were undertaken in 1988, 1989 and 1990. The objective was to investigate the relative occurrence of BYDV serotypes in areas relevant to CIMMYT cereal breeding programs. Overall, MAV and PAV serotypes predominated in the samples collected, though their relative frequencies depended on the location. SGV serotypes were uncommon in most locations. Group 2 serotypes occurred widely, but RMV serotypes were more common than RPV serotypes.  相似文献   

9.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

10.
In spite of increasing awareness that interactions between herbivory and the supply rates of multiple nutrients control biodiversity, ecosystem functions and ecosystem services in ecological communities, few experimental studies have concurrently examined the independent and joint effects of multiple nutrients and mammalian consumers on these responses in natural systems. Here we quantify the independent and interactive effects of multiple concurrent changes to resources and consumers in an invaded annual grassland community in California. In a two‐year study using thirty‐seven 400‐m2 plots, we examine interactions among four nutrient treatments (N, P, K and micronutrients) and a keystone herbivore (pocket gopher Thomomys bottae) on four plant community outcomes: 1) plant diversity, 2) functional group composition, 3) net biomass production, an important ecosystem function, and 4) infection risk by a group of viral pathogens shared by crop and non‐crop grasses (barley and cereal yellow dwarf viruses), an important regulating ecosystem service. We found that grassland biodiversity and infection risk were controlled by nutrient identity and supply ratio whereas nutrients interacted strongly with consumers to control grassland composition and net primary productivity. The most important insights arising from this multi‐factor experiment are that net biomass production increased with phosphorus or nitrogen supply; however, when gophers were present, nitrogen caused no net effect on biomass production. In addition, infection risk was driven by phosphorus, nitrogen and micronutrient supply. Infection in a sentinel host increased strongly with the addition of micronutrients or phosphorus; however, infection declined with increasing N/P supply ratio, indicating stoichiometric control of infection risk. Finally, in spite of manipulating multiple factors, plant species richness declined with nitrogen, alone. The importance of higher‐order interactions demonstrates that a multi‐factor approach is critical for effective predictions in a world in which anthropogenic activities are simultaneously changing herbivore abundance and the relative supply of many nutrients.  相似文献   

11.
Genes involved in plant defences against herbivores and pathogens are often highly polymorphic. This is a putative sign that balancing selection may have operated reciprocally on the hosts and their herbivores. Spatial and temporal variations (for example, in soil nutrients and the plants'' ontogenetic development) may also modulate resistance traits, and thus selection pressures, but have been largely overlooked in theories of plant defences. Important elements of defences in Populus tremula (hereafter aspen) are phenolic compounds, including condensed tannins (CTs). Concentrations of CTs vary considerably with both variations in external factors and time, but they are also believed to provide genotype‐dependent resistance, mainly against chewing herbivores and pathogens. However, evidence of their contributions to resistance is sparse. Detailed studies of co‐evolved plant–herbivore associations could provide valuable insights into these contributions. Therefore, we examined correlations between CT levels in aspen leaves and both the feeding behavior and reproduction of the specialist aspen leaf aphid (Chaitophorus tremulae) in varied conditions. We found that xylem sap intake and probing difficulties were higher on genotypes with high‐CT concentrations. However, aphids engaged in more nonprobing activities on low‐CT genotypes, indicating that CTs were not the only defence traits involved. Thus, high‐CT genotypes were not necessarily more resistant than low‐CT genotypes, but aphid reproduction was generally negatively correlated with local CT accumulation. Genotype‐specific resistance ranking also depended on the experimental conditions. These results support the hypothesis that growth conditions may affect selection pressures mediated by aphids in accordance with balancing selection theory.  相似文献   

12.
Parasite host shifts can impose a high selective pressure on novel hosts. Even though the coevolved systems can reveal fundamental aspects of host–parasite interactions, research often focuses on the new host–parasite relationships. This holds true for two ectoparasitic mite species, Varroa destructor and Varroa jacobsonii, which have shifted hosts from Eastern honey bees, Apis cerana, to Western honey bees, Apis mellifera, generating colony losses of these pollinators globally. Here, we study infestation rates and reproduction of V. destructor and V. jacobsonii haplotypes in 185 A. cerana colonies of six populations in China and Thailand to investigate how coevolution shaped these features. Reproductive success was mostly similar and low, indicating constraints imposed by hosts and/or mite physiology. Infestation rates varied between mite haplotypes, suggesting distinct local co‐evolutionary scenarios. The differences in infestation rates and reproductive output between haplotypes did not correlate with the virulence of the respective host‐shifted lineages suggesting distinct selection scenarios in novel and original host. The occasional worker brood infestation was significantly lower than that of drone brood, except for the V. destructor haplotype (Korea) from which the invasive lineage derived. Whether mites infesting and reproducing in atypical intraspecific hosts (i.e., workers and queens) actually predisposes for and may govern the impact of host shifts on novel hosts should be determined by identifying the underlying mechanisms. In general, the apparent gaps in our knowledge of this coevolved system need to be further addressed to foster the adequate protection of wild and managed honey bees from these mites globally.  相似文献   

13.
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one‐sided adaptation. In addition, our results also show that the coevolving host–pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.  相似文献   

14.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

15.
Following a host shift, repeated co‐passaging of a mutualistic pair is expected to increase fitness over time in one or both species. Without adaptation, a novel association may be evolutionarily short‐lived as it is likely to be outcompeted by native pairings. Here, we test whether experimental evolution can rescue a low‐fitness novel pairing between two sympatric species of Steinernema nematodes and their symbiotic Xenorhabdus bacteria. Despite low mean fitness in the novel association, considerable variation in nematode reproduction was observed across replicate populations. We selected the most productive infections, co‐passaging this novel mutualism nine times to determine whether selection could improve the fitness of either or both partners. We found that neither partner showed increased fitness over time. Our results suggest that the variation in association success was not heritable and that mutational input was insufficient to allow evolution to facilitate this host shift. Thus, post‐association costs of host switching may represent a formidable barrier to novel partnerships among sympatric mutualists.  相似文献   

16.
Human cytomegalovirus (HCMV) infection in the respiratory tract leads to pneumonitis in immunocompromised hosts without available vaccine. Considering cytomegalovirus (CMV) mainly invades through the respiratory tract, CMV‐specific pulmonary mucosal vaccine development that provides a long‐lasting protection against CMV challenge gains our attention. In this study, N‐terminal domain of GP96 (GP96‐NT) was used as a mucosal adjuvant to enhance the induction of pulmonary‐resident CD8 T cells elicited by MCMV glycoprotein B (gB) vaccine. Mice were intranasally co‐immunized with 50 μg pgB and equal amount of pGP96‐NT vaccine 4 times at 2‐week intervals, and then i.n. challenged with MCMV at 16 weeks after the last immunization. Compared with pgB immunization alone, co‐immunization with pgB/pGP96‐NT enhanced a long‐lasting protection against MCMV pneumonitis by significantly improved pneumonitis pathology, enhanced bodyweight, reduced viral burdens and increased survival rate. Moreover, the increased CD8 T cells were observed in lung but not spleen from pgB/pGP96‐NT co‐immunized mice. The increments of pulmonary CD8 T cells might be mainly due to non‐circulating pulmonary‐resident CD8 T‐cell subset expansion but not circulating CD8 T‐cell populations that home to inflammation site upon MCMV challenge. Finally, the deterioration of MCMV pneumonitis by depletion of pulmonary site‐specific CD8 T cells in mice that were pgB/pGP96‐NT co‐immunization might be a clue to interpret the non‐circulating pulmonary‐resident CD8 T subset expansion. These data might uncover a promising long‐lasting prophylactic vaccine strategy against MCMV‐induced pneumonitis.  相似文献   

17.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

18.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

19.
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA‐binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) condenses with RNA via liquid–liquid phase separation (LLPS) and that N protein can be recruited in phase‐separated forms of human RNA‐binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N‐terminal IDR and central‐linker IDR, as well as the folded C‐terminal oligomerization domain, while the folded N‐terminal domain and the C‐terminal IDR are not required. N protein phase separation is induced by addition of non‐specific RNA. In addition, N partitions in vitro into phase‐separated forms of full‐length human hnRNPs (TDP‐43, FUS, hnRNPA2) and their low‐complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS‐CoV‐2 viral genome packing and in host‐protein co‐opting necessary for viral replication and infectivity.  相似文献   

20.
The inhibitor of growth family member 4 (ING4) is one of the ING family genes, serves as a repressor of angiogenesis or tumour growth and suppresses loss of contact inhibition. Oncostatin M (OSM) is a multifunctional cytokine that belongs to the interleukin (IL)‐6 subfamily with several biological activities. However, the role of recombinant adenoviruses co‐expressing ING4 and OSM (Ad‐ING4‐OSM) in anti‐tumour activity of laryngeal cancer has not yet been identified. Recombinant Ad‐ING4‐OSM was used to evaluate their combined effect on enhanced anti‐tumour activity in Hep‐2 cells of laryngeal cancer in vivo. Moreover, in vitro function assays of co‐expression of Ad‐ING4‐OSM were performed to explore impact of co‐expression of Ad‐ING4‐OSM on biological phenotype of laryngeal cancer cell line, that is Hep‐2 cells. In vitro, Ad‐ING4‐OSM significantly inhibited the growth, enhanced apoptosis, altered cell cycle with G1 and G2/M phase arrest, and upregulated the expression of P21, P27, P53 and downregulated survivin in laryngeal cancer Hep‐2 cells. Furthermore, in vivo functional experiments of co‐expressing of Ad‐ING4‐OSM demonstrated that solid tumours in the nude mouse model were significantly suppressed, and the co‐expressing Ad‐ING4‐OSM showed a significant upregulation expression of P21, P53, Bax and Caspase‐3 and a downregulation of Cox‐2, Bcl‐2 and CD34. This study for the first time demonstrated the clinical value and the role of co‐expressing Ad‐ING4‐OSM in biological function of laryngeal cancer. This work suggested that co‐expressing Ad‐ING4‐OSM might serve as a potential therapeutic target for laryngeal cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号