首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
《Journal of Asia》1999,2(2):133-141
Carbon dioxide gas production in maize, mixed with 0, 5 or 10% broken corn and foreign material (BCFM), and 0 or 100 adult maize weevils at 13, 16 or 19% moisture content (mc) was studied in 1.8 liter thermos containers which were held at 26.6°C and 60±5% r.h. for 80 days. CO2 was measured at 7 day intervals using an infrared gas analyzer. At 13 or 16% mc, higher CO2 production was measured in infested maize than in uninfested maize, and BCFM did not significantly affect CO2 production. At 19% mc, CO2 production was greatly increased regardless of the presence of insects and BCFM. CO2 produced over 12 weeks was 110–166g/kg. The number of live maige weevils after 80 days was 538 in 13% mc, 344 in 16% mc and 48 in the 19% mc Therefore, respiration of fungi such as Aspergillus glaucus, Aspergillus candidus and Aspergillus terreus other than that of insects appeared to more greatly influence CO2 production than did the insects at 19% mc The moisture content and presence of maize weevils were major factors affecting respiration during storage, but level of BCFM did not significantly affect CO2 production. The CO2 produced over 12 weeks was 135–147 g/kg in infested maize at 13% and 136–144 g/kg at 16% mc.  相似文献   

2.
Treatment of both uninfested and armyworm‐infested maize plants with jasmonic acid (JA) is known to attract the parasitic wasp, Cotesia kariyai Watanabe (Hymenoptera: Braconidae). Here, we show that treatment with a methyl ester of a JA precursor, methyl linolenate (MeLin), also causes maize plants to attract this wasp, yet does not cause elevated levels of endogenous JA. The volatile chemicals emitted from either infested or uninfested maize plants treated with MeLin were qualitatively and quantitatively different from those emitted from JA‐treated plants. Among compounds emitted from MeLin‐treated plants, α‐pinene and menthol attracted wasps in pure form in a two‐choice test using a choice chamber. A mixture of methyl salicylate, α‐copaene, and β‐myrcene also attracted wasps. In contrast, (Z)‐3‐hexenyl acetate was among the main attractants for C. kariyai in JA‐treated plants. These data show that in addition to JA, MeLin also has the potential to increase the host‐finding ability of C. kariyai, but that the composition of attractants they induce differs.  相似文献   

3.
The aftereffects of the Russian wheat aphid (RWA) Diuraphis noxia on sowing and productive qualities of barley and spring bread wheat grain were assessed. Seeds of 4 cultivars of barley (Volgar, Povolzhsky 65, Kazak, and Povolzhsky 16) and 4 cultivars of spring wheat (Kinelskaya 59, Kinelskaya Otrada, Kinelskaya Niva, and Kinelskaya 2010) from spikes infested and uninfested with RWA in 2007 and in 2014 were sown in the subsequent years, using 0.5 m2 experimental plots in four replications, at a seeding rate of 300 grains/m2. The least significant difference (LSD0.5) was used to compare the mean ± standard deviation (SD) values. The field germination rate of seeds from spring wheat spikes damaged by RWA was reduced by 15%. Of the components of grain yield, barley and spring wheat grown from seeds from the infested spikes showed a 23-31% smaller number of productive tillers before harvesting, a 16% smaller number of grains per spike, a 13-16% lower grain weight per spike, and a total yield loss of 33-42%. In hulless bread wheat RWA fed on the developing kernels inflicting greater damage, whereas the hulled barley seeds were practically not damaged. The mean yield loss of the barley and spring wheat spikes infested with RWA was 24-32% and 50-66%, respectively. Due to the greater tillering capacity and formation of secondary productive tillers in barley, about 52% of the productive barley tillers and 37-39% of spring wheat ones were infested with RWA, which resulted in a comparable yield loss (20-25% in barley and 19-23% in spring wheat). Resistance to RWA was higher in spring wheat and barley cultivars with a shorter vegetation period, looser spikes, and thinner culm walls. The length of productive tillers damaged by RWA was reduced by 21-28%, which determined a lower incidence of leaf diseases.  相似文献   

4.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

5.
EXPERIMENTS ON THE AIRTIGHT STORAGE OF DAMP GRAIN   总被引:1,自引:0,他引:1  
Airtight storage as a means of preventing deterioration of damp grain was studied both on a laboratory scale and in 10-ton bins, at grain moisture contents from 17 to 24%.
Except when containers leaked, there was no development of mould, and the grain was bright and free-flowing, even after prolonged storage, at high moisture content. The grain remained mould-free after a bin was opened several times and small quantities of grain run out in cool weather. Such grain, removed from hermetic conditions and stored in sacks in an unheated building, showed no mould development for several weeks.
With prolonged hermetic storage or at high moisture content the grain developed a sour-sweet smell and taste which when extreme were not entirely removed by subsequent airing or drying.
There was no spontaneous heating; the grain in the 10-ton bins reflected the mean temperature of the surroundings.
The oxygen in the intergranular air was reduced to a low level and replaced by carbon dioxide within a few days or weeks, according to the moisture content and temperature of the grain. At moisture contents of 16% and above, appreciable positive pressure developed inside the containers. The carbon dioxide concentration rose to 90–95% at grain moistures of 22–24%, 70–75% at 19%, 50% at 18%, and 35–40% at about 17% moisture content. The change from aerobic to anaerobic activity was marked by a reduction in the rate of production of carbon dioxide. With grain of less than 14% moisture content, the rate of respiration was slow, the carbon dioxide concentration being only about 2% after 18 months' storage. As long as oxygen remained, the apparent respiratory quotient was consistently between 0.6 and 0.7, whatever the moisture content of the grain.
This work formed part of the programme of work of the Pest Infestation Laboratory.  相似文献   

6.
The attraction of Cotesia flavipes Cameron to volatiles from a range of non-target lepidopteran larvae and their host plants (grasses and trees) or food substrate (honeycomb) was evaluated using a Y-tube olfactometer. The non-target host larvae used in the study included Galleria mellonella (L.), Charaxes cithaeron Felder, Bombyx mori L., and Eldana saccharina Walker. The target insects, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand), were used as controls. Host plants included Afzelia quanzensis Welw., Morus alba L., Cyperus papyrus L., Pennisetum purpureum Schumach, and Zea mays L. The response of C. flavipes to volatiles from the non-target larvae and their food was variable. Attraction to uninfested maize was not significantly different from uninfested plants of non-target hosts or honeycomb. Only maize and honeycomb were preferred over clean air. C. partellus infested maize plants were significantly more attractive than M. alba, A. quanzensis, and honeycomb infested with their herbivores. Infested maize and C. papyrus were more attractive than uninfested ones. When odors from naked larvae were tested, C. flavipes preferred odors from C. partellus larvae over those of E. saccharina and C. cithaeron and larvae of C. partellus and G. mellonella were preferred to clean air. The implications of these findings for biological control and its effect on non-target organisms are discussed.  相似文献   

7.
Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous insects such as lepidopteran larvae. Here, we show that great tits (Parus major) discriminate between caterpillar‐infested and uninfested trees. Birds were attracted to infested trees, even when they could not see the larvae or their feeding damage. We furthermore show that infested and uninfested trees differ in volatile emissions and visual characteristics. Finally, we show, for the first time, that birds smell which tree is infested with their prey based on differences in volatile profiles emitted by infested and uninfested trees. Volatiles emitted by plants in response to herbivory by lepidopteran larvae thus not only attract predatory insects but also vertebrate predators.  相似文献   

8.
夏玉米叶片气体交换参数对干旱过程的响应   总被引:2,自引:0,他引:2  
麻雪艳  周广胜 《生态学报》2018,38(7):2372-2383
目前已经开展了大量的干旱对作物叶片气体交换参数影响的研究,但关于作物叶片气体交换参数对干旱过程的响应及其关键阈值的研究仍较少。基于夏玉米七叶期开始的5个初始水分梯度的长时间持续干旱模拟实验资料,分析了不同强度持续干旱过程中夏玉米叶片气体交换参数(净光合速率Pn,气孔导度Gs,蒸腾速率Tr,胞间CO_2浓度Ci和气孔限制值Ls)的变化规律及其关键阈值。结果表明,玉米的净光合速率(Pn),蒸腾速率(Tr)和气孔导度(Gs)在干旱发生初期呈大幅度下降,但随着干旱持续会出现一定的适应性。利用统计容忍限方法确定了夏玉米拔节期Pn,Tr和Gs响应干旱的临界土壤相对湿度(0—30cm)分别为53%,51%和48%,对应的临界叶含水率分别为81.8%,81.3%和81.2%。夏玉米光合作用由气孔限制向非气孔限制转换的0—30cm土壤相对湿度均为44%±2%,对应的叶含水率均为77.6%±0.3%。研究结果可为夏玉米干旱发生发展过程的监测预警提供依据。  相似文献   

9.
Maize (Zea mays L.) productivity under drought stress dependsto some extent upon a hybrid's capacity to produce and translocateassimilate to its developing kernels during the stress periodand/or after the stress is relieved. The objective of this studywas to evaluate differences in carbon and nitrogen accumulationand partitioning under drought stress among maize hybrids thatdiffer in yield potential and/or physiological metabolism duringreproductive development. The hybrids B73 x LH38, FS854, B73xMol7and US13 were subjected to drought stress from the 7th leafstage until pollination was completed, at which time the soilof the stressed plots was replenished with water. For d. wtand chemical constituent determinations, plants of each hybridwere harvested from the irrigated and drought stressed plotsat silking, mid-grain fill, and physiological maturity. Averagedover hybrids, vegetative biomass at silking was reduced 25%as a result of the drought stress treatment, with B73 x LH38and FS854 accumulating more total biomass during the later portionof grain fill than the other two hybrids under both soil moisturetreatments. At silking, the total non-structural carbohydratecontent of the hybrids' vegetative tissue was not changed asa result of drought stress, whereas their reduced nitrogen (N)contents were decreased by an average of 33%. B73 x LH38 andFS854 had greater grain carbohydrate and reduced N contentsunder irrigation and smaller decreases in those variables asa result of soil moisture deficit than did the other two hybrids.These results indicate that the greater drought tolerance ofB73 x LH38 and FS854 to stress imposed during vegetative andearly reproductive development resulted from their more activeN uptake and assimilation and sugar production during the laterportion of grain fill and from their more efficient partitioningof assimilate to the developing kernels. Zea mays L., maize, drought stress, nitrogen, carbohydrates, hybrids, partitioning  相似文献   

10.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

11.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

12.
Automated methods of monitoring stored grain for insect pests will contribute to early detection and aid in management of pest problems. An insect population infesting stored oats at a seed processing plant in north-central Florida was studied to test a device for counting insects electronically (Electronic Grain Probe Insect Counter, EGPIC), and to characterize the storage environment. The device counts insects as they fall through an infrared beam incorporated into a modified grain probe (pitfall) trap and transmits the counts to a computer for accumulation and storage. Eight traps were inserted into the surface of the grain bulk, and the insects trapped were identified and counted manually at weekly intervals. Grain temperature and moisture content also were recorded for each trap location. Manual and automatic counts were compared to estimate error in the EGPIC system. Both over- and undercounting occurred, and errors ranged from -79.4 to 82.4%. The mean absolute value of error (+/- SE) was 31.7% (+/- 4.3). At least 31 species, or higher taxa, were detected, but the psocid Liposcelis entomophila (Enderlein) and the foreign grain beetle, Ahasverus advena (Waltl), accounted for 88% of the captured insects. Species diversity, phenology, and spatial distribution are presented, as well as temporal and spatial distribution of grain temperature and moisture content. The data sets generated will find application in population modeling and development of integrated pest management systems for stored grain.  相似文献   

13.
Phytophagous insects can have severe impacts on forested ecosystems in outbreak situations but their contribution to flows of energy and matter is otherwise not so well known. Identifying the role of phytophagous insects in forested ecosystems is partly hindered by the difficulty of combining results from population and community ecology with those from ecosystem ecology. In our study we compared the effects of aphids and leaf-feeding lepidopterous larvae on the epiphytic micro-organisms in the canopies of spruce, beech and oak, and on the vertical flow of energy and nutrients from the canopies down to the forest floor. We particularly searched for patterns resulting from endemic herbivory rather than outbreak situations. Excreta of lepidopterous larvae and aphids promoted the growth of epiphytic micro-organisms (bacteria, yeasts, filamentous fungi) on needles and leaves, which suggests that micro-organisms were energy limited. Leachates from needles and leaves of infested trees contained higher concentrations of dissolved organic C and lower concentrations of NH4-N and NO3-N, relative to uninfested trees. The seasonal abundance of herbivores and micro-organisms significantly affected the dynamics of throughfall chemistry; for instance, concentrations of inorganic N were lower underneath infested than uninfested trees during June and July. There was little difference between the chemistry of soil solutions collected from the forest floor beneath infested and uninfested trees. Thus, under moderate to low levels of infestation the effects of above-ground herbivory seems to be obscured in the soil through buffering biological processes.  相似文献   

14.
Every week, for 20 weeks, the growth of naturally occurring grain storage fungi on wheat infested with the three commonest British grain storage mites,Acarus siro, Glycyphagus destructor andTyrophagus longior, was compared with that on uninfested wheat.The number of colonies of theAspergillus glaucus group per gram were always less on grain infested with mites than on uninfested grain.Penicillium spp. were also less numerous on grain which was infested withA. siro but did not appear to be affected by the other mites. In contrast, two fungi which are pathogenic to mites,Aspergillus restrictus andWallemia sebi, were more abundant in the presence of certain mites. The former was associated withG. destructor, the latter withG. destructor andA. siro.The three species of mites either feed on theA. glaucus group andPenicillium spp., or inhibit them by an unknown secretion. Pathogenic fungi are probably avoided. Mites are therefore an important variable in studies on fungal growth during grain drying and storage.  相似文献   

15.
Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabilis. At the main study site, workers in infested colonies exhibited lower relatedness and higher estimated queen numbers, on average, than uninfested ones. Additionally, estimated queen numbers were negatively correlated with estimated average numbers of mates per queen within infested colonies. At another site, infested colonies also exhibited significantly lower worker relatedness, and estimated queen numbers were comparable in trend. In contrast, in two populations of F. lemani where M. mutabilis was absent, relatedness within colonies was high (40 and 90% with R>0.6). While high genetic variation can benefit social insects by increasing their resistance to pathogens, there may be a cost in the increased likelihood of infiltration by social parasites owing to greater variation in nestmate recognition cues. This study provides the first empirical test of this hypothesis.  相似文献   

16.
The bioactivity of powder from the leaves of Aristolochia ringens, Dalbergia saxatilis, Dioclea reflexa, Ocimum gratissimum, Chrysophyllum albidum, Moringa oleifera, Citrus limon and Newbouldia laevis was tested against the larger grain borer (LGB) in maize kernels and the effect of the powder on the nutritional composition of the kernels was determined. A total of 72 glass bottles containing 100?g maize kernels was divided into four groups. In the first group of 32 glass bottles, 5?g powder of the experimental plants was admixed uniformly with the kernels (5%?w/w). Ten 1–5-day-old LGB adults were introduced into each of the glass bottles. A second group of 32 glass bottles contains 100?g maize kernels admixed with the plant powder as described above, but LGB were not added. In the third group of four glass bottles, 100?g maize kernels received insects only, while in the fourth group of four glass bottles 100?g maize kernels were neither mixed with plant products nor infested with LGB. The treatments were arranged on worktables using completely randomised design and left for three months. The plant products-treated samples (insect free) were passed through a 30?mesh sieve to sieve out the powder and the clean kernels were analysed for proximate composition. The untreated maize kernel had a significantly (p?<?0.05) higher % of grain weight loss (17.33), grain damage % (70.96), number (122.0) of adult LGB, weight (14.46?g) of grain dust and lower % of grain germination. The adsorption and absorption of some of the plant powder by the kernels had significant effect on the kernel composition of protein, fibre and carbohydrate, but not on moisture, dry matter and fat and ash content. Control of LGB with the powder of the test plants could be used as green insecticide for the management of LGB.  相似文献   

17.
Undamaged plants are known to suffer less damage from herbivores when previously exposed to airborne factors from neighboring plants that are either infested or artificially damaged. However, to date, the effects of such a defensive phenomenon on performance of herbivorous insects have not been clearly shown. Here, we studied such effects in an interaction between a willow plant, Salix eriocarpa Franchet et Savatier (Salicales: Salicaceae), and a specialist leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae). In a wind tunnel, uninfested willow plants were placed downwind of willow plants infested by leaf beetle larvae for 4 days. As a control, we placed uninfested plants downwind of uninfested plants in the tunnel. After exposure, downwind plants were served to leaf beetle larvae. Pupal weight, larval survival rates, and the leaf area consumed by larvae all decreased significantly, and larval developmental duration increased significantly, when larvae fed on willow plants downwind of infested plants were compared with those downwind of uninfested plants. These results showed that airborne factors from infested willow plants negatively affected the performance of leaf beetle larvae. Further studies are needed to identify the active factor(s) from the infested willow plants affecting the performance of leaf beetle larvae.  相似文献   

18.
The present work showed that spider mite-infested leaves placed in the light were more attractive to predatory mites than the infested leaves placed in the dark; furthermore, an increase in the light intensity enhanced this attractiveness. However, the increase of the light intensity did not change the attractiveness of the uninfested leaves to predatory mites. The capacity of cyanide-resistant respiration and the photosynthetic rates of both the infested and uninfested leaves increased with increasing light intensities, whereas the photosystem (PS) II chlorophyll (Chl) fluorescence decreased. The increase of the capacity of cyanide-resistant respiration in the infested leaves was more dramatic than that in the uninfested leaves, whereas the values of photosynthetic rates and Chl fluorescence were lower in the infested leaves than those in the uninfested leaves. Treatment of the infested and uninfested leaves with 1 mM salicylhydroxamic acid (SHAM, an inhibitor of cyanide-resistant respiration) decreased photosynthetic rates and caused further reductions in PSII fluorescence, especially under a higher light intensity. In contrast, the effects of SHAM on PSII fluorescence parameters and photosynthetic rates of the infested leaves were more dramatic than on those of the uninfested leaves. The treatment with SHAM did not significantly change the attractiveness of the infested or uninfested leaves to the predatory mites under all of the light intensities tested. These results indicated that cyanide-resistant respiration was not directly associated with the light-induced attraction of predators to plants, but it could play a role in the protection of photosynthesis. Such role might become relatively more important when photosynthesis is impaired by herbivores infestation.  相似文献   

19.
The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta was studied over a 10-month period in two field trials near Lake Victoria in Kenya. One plot was maintained free of mites by means of acaricide, while the other was artificially infested.The highest population density of M. tanajoa occurred during the dry season. A maximum leaf area index (LAI) of about 2 was reached at the onset of the dry season. The total leaf area of mite infested plants was reduced compared with uninfested plants during the dry spell. During the following rainy season infested plants recovered and attained the same leaf area as uninfested plants. A multiple regression model predicting the leaf area showed that 58% of the seasonal variation could be explained by plant age, soil water, and leaf injury.The net growth rate of infested plants was lower than that of uninfested plants. Maximum values of 21 (infested plants) and 49 (uninfested plants) g m-2 week-1 were attained at the onset of the second rainy season. No difference was found between uninfested and infested plants with respect to net assimilation rates per unit leaf area during the dry season. The net assimilation rates reached a maximum almost at the same time as the growth rates, but the infested plants peaked slightly earlier and at a lower level than the uninfested plants. M. tanajoa did not affect the relative allocation of dry matter into stems and storage roots, but the absolute allocation of dry matter declined with increasing mite injury. Thus, after 10 months the dry matter of infested plants was reduced by 29% and 21% for storage roots and stems, respectively, compared with the uninfested plants.  相似文献   

20.
In the dry savannas of West and Central Africa, where low soil fertility, unpredictable rainfall, weed competition and recurrent drought are major constraints to maize production, the development of tropical maize genotypes with high and stable yields under drought and low-nitrogen condition is very important since access to these improved genotypes may be the only affordable alternative to many small scale farmers. Field trials were conducted in 2002 and 2003 at Ikenne southwestern Nigeria to investigate the effect of weed pressures and drought stress on 2 maize (Zea mays L.) hybrids (9134-14, 9803-9) and 2 open-pollinated varieties (STREVIWD, IYFDCO1). Irrigation was withdrawn 4 weeks after planting (about four weeks to mid-flowering) in the drought stress while the adjacent watered treatment had irrigation throughout the growing period. The weed pressures were the completely weeded plots (hand weeding every week) and weedy plots (weeded once, 2 weeks after planting). The experiment was a split plot in a randomized complete block design with four replicates. Drought stress reduced the stover weight and grain yield of the maize cultivars by 6% and 34% respectively. Weed-free plots had maize with higher agronomic traits than unweeded treatments. Hybrid 9803-9 was more susceptible to drought and weed stress as indicated in the stover weight and grain yield. STREVIWD an open-pollinated variety (OPV) and Hybrid 9134-14 had superior performances in terms of grain yield and shorter anthesis silking interval. Soil moisture content was higher in the unweeded plots while the uptake of moisture was highest in drought susceptible hybrid 9803-9. Irrespective of the genotypes, maize (hybrid and OPV) was more tolerant to drought in a weed-free environment than in unweeded conditions. There existed a negative but significant correlation between weed biomass and chlorophyll content (−0.29, P < 0.01), grain yield (−0.45, P < 0.05), ear plant−1 (−0.27, P < 0.05) and kernel-number (−0.366 P < 0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号