首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Aim

The emergence of large-scale patterns of animal body size is the central expectation of a wide range of (macro)ecological and evolutionary hypotheses. The drivers shaping these patterns include climate (e.g. Bergmann's rule), resource availability (e.g. ‘resource rule’), biogeographic settings and niche partitioning (e.g. adaptive radiation). However, these hypotheses often make opposing predictions about the trajectories of body size evolution. Therefore, whether underlying drivers of body size evolution can be identified remains an open question. Here, we employ the most comprehensive global dataset of body size in amphibians, to address multiple hypotheses that predict patterns of body size evolution based on climatic factors, ecology and biogeographic settings to identify underlying drivers and their generality across lineages.

Location

Global.

Time Period

Present.

Major Taxa Studied

Amphibians.

Methods

Using a global dataset spanning 7270 (>87% of) species of Anura, Caudata and Gymnophiona, we employed phylogenetic Bayesian modelling to test the roles of climate, resource availability, insularity, elevation, habitat use and diel activity on body size.

Results

Only climate and elevation drive body size patterns, and these processes are order-specific. Seasonality in precipitation and in temperature predict body size clines in anurans, whereas caecilian body size increases with aridity. However, neither of these drivers explained variation in salamander body size. In both anurans and caecilians, size increases with elevational range and with midpoint elevation in caecilians only. No effects of mean temperature, resource abundance, insularity, time of activity or habitat use were found.

Main Conclusions

Precipitation and temperature seasonality are the dominant climatic drivers of body size variation in amphibians overall. Bergmann's rule is consistently rejected, and so are other alternative hypotheses. We suggest that the rationale sustaining existing macroecological rules of body size is unrealistic in amphibians and discuss our findings in the context of the emerging hypothesis that climate change can drive body size shifts.  相似文献   

2.
Pleistocene glacial periods have had a major influence on the geographical patterns of genetic structure of species in tropical montane regions. However, their effect on morphological differentiation among populations of cloud forest plants remains virtually unexplored. Here, we address this question by testing whether geographical patterns of morphological variation in Ocotea psychotrioides can be explained by the intensity of climate change occurring during 130,000 years. For this, we measured vegetative and reproductive traits for 96 individuals from 36 localities registered across the species’ distribution range. Species distribution models and multivariate statistics were used to investigate geographical patterns of morphological variation and test their association with current and past climatic conditions. Leaf size and pubescence in O. psychotrioides showed a latitudinal pattern of clinal variation that does not fit the geographical gradient of increasing leaf size towards lower latitudes observed globally among plants. Instead, the observed clinal variation conforms to a pattern of increasing leaf size towards higher latitudes. However, our analyses showed weak to non-significant association between morphology and current climate. Interestingly, our analyses showed that predicted shifts in the distribution range of O. psychotrioides during the last 130,000 years were accompanied by significant changes in climatic conditions, particularly temperature seasonality and precipitation. Accordingly, climatic instability showed a better fit to the observed patterns of leaf size and pubescence variation than current climate conditions. These results suggest that climatic instability during the Pleistocene glacial periods might play a key role in promoting morphological differentiation among populations of cloud forest plants.  相似文献   

3.
Body size is one of the most influential traits affecting many ecological and physiological processes across animal and plant taxa. Studies of the environmental factors shaping body size patterns may evaluate either temporal or spatial dimensions. Here, we analyzed body size evolution in the radiation of Anolis lizards across both geographical and temporal dimensions. We used a set of macroecological and macroevolutionary methods to test current and past environmental effects on geographical gradients of body size and its evolutionary rates. First, we test whether a set of current ecological/physiological hypotheses (heat balance, productivity and seasonality) explains spatial body size gradients. Second, we evaluate how tempo (i.e. evolutionary rates) and mode (i.e. evolutionary process) of body size evolution changed through time and the role of paleo-temperatures on rates of body size evolution during the Cenozoic. We did not find a signature of current environmental variables driving spatial body size gradients. By contrast, we found strong support for a correlation between temperature changes (i.e. climate cooling) during the Cenozoic and rates of body size evolution (i.e. body size diversification). We suggest that patterns of body size evolution in Anolis lizards might be influenced by thermoregulatory behavior across clades and regions.  相似文献   

4.
Macroevolutionary patterns of sexual size dimorphism (SSD) indicate how sexual selection, natural selection, and genetic and developmental constraints mold sex differences in body size. One putative pattern, known as Rensch's rule, posits that, among species with female‐larger SSD, the relative degree of SSD declines with species' body size, whereas, among male‐larger SSD species, relative SSD increases with size. Using a dataset of 196 chelonian species from all fourteen families, we investigated the correlation in body size evolution between male and female Chelonia and the validity of Rensch's rule for the taxon and within its major clades. We conclude that male–female correlations in body size evolution are high, although these correlations differ among chelonian families. Overall, SSD scales isometrically with body size; Rensch's rule is valid for only one family, Testudinidae (tortoises). Because macroevolutionary patterns of SSD can vary markedly among clades, even in a taxon as morphologically conservative as Testudines, one must guard against inappropriately pooling clades in comparative studies of SSD. The results of the present study also indicate that regression models that assume the x‐variable (e.g. male body size) is measured without statistical error, although frequently reported, will result in erroneous conclusions about phylogenetic trends in sexual size dimorphism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 396–413.  相似文献   

5.
Ecogeographic rules that describe quantitative relationships between morphologies and climate might help us predict how morphometrics of animals was shaped by local temperature or humidity. Although the ecogeographic rules had been widely tested in animals of Europe and North America, they had not been fully validated for species in regions that are less studied. Here, we investigate the morphometric variation of a widely distributed East Asian passerine, the vinous‐throated parrotbill (Sinosuthora webbiana), to test whether its morphological variation conforms to the prediction of Bergmann''s rule, Allen''s rules, and Gloger''s rule. We at first described the climatic niche of S. webbiana from occurrence records (n = 7838) and specimen records (n = 290). The results of analysis of covariance (ANCOVA) suggested that the plumage coloration of these parrotbills was darker in wetter/warmer environments following Gloger''s rule. However, their appendage size (culmen length, beak volume, tarsi length) was larger in colder environments, the opposite of the predictions of Allen''s rule. Similarly, their body size (wing length) was larger in warmer environments, the opposite of the predictions of Bergmann''s rule. Such disconformity to both Bergmann''s rule and Allen''s rule suggests that the evolution of morphological variations is likely governed by multiple selection forces rather than dominated by thermoregulation. Our results suggest that these ecogeographic rules should be validated prior to forecasting biological responses to climate change especially for species in less‐studied regions.  相似文献   

6.
Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change. Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico. Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century. Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change. Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long‐term record in understanding biotic responses to climatic shifts.  相似文献   

7.
The validity of Bergmann's rule, perhaps the best known ecogeographical rule, has been questioned for ectothermic species. Here, we explore the interspecific version of the rule documenting body size gradients for anurans across the whole New World and evaluating which environmental variables best explain the observed patterns. We assembled a dataset of body sizes for 2761 anuran species of the Western Hemisphere and conducted assemblage‐based and cross‐species analyses that consider the spatial and phylogenetic structure in the data. In accordance with heat and water‐related explanations for body size clines, we found a consistent association of median body size and potential evapotranspiration across the New World. A relevant role of water availability also emerges, suggesting the joint importance of body size for thermoregulation and hydroregulation in anurans. Anurans do not follow a simple Bergmannian pattern of increasing size towards high latitudes. Consistent with previous regional findings, our Hemisphere‐wide analyses detect that the geographic variation in anuran body sizes is highly dependent on a trade‐off between heat and water balance. The observed size‐climate relationships possibly emerge from the interplay between thermoregulatory abilities and the benefits inherent to reduced surface‐to‐volume ratios in larger species, which decrease the rates of evaporative water loss and favour heat retention. Our results also show how temperature becomes important for species that are directly in contact with the substrate and water, like burrowing and terrestrial anurans, while arboreal species exhibit a body size cline linked with potential evapotranspiration.  相似文献   

8.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   

9.

Aim

So far, latitudinal body size clines have been discussed primarily in the context of thermoregulation, sensu Bergmann. However, body size patterns are ambiguous in ectotherms, and this heterogeneity remains poorly understood. We tested whether Bergmann's rule and the resource availability rule, which states that energetic requirements determine species body size, apply to damselflies and dragonflies (Odonata). Furthermore, we hypothesized that the contrasting effects of thermoregulation and resource availability (e.g., productivity) can obscure the overall gradient in body size variation.

Location

Global.

Time period

Contemporary.

Major taxa studied

Odonata.

Methods

Using data for 43% of all odonate species described so far, we tested our hypotheses in phylogenetically and spatially comparative analyses at assemblage and species levels. For the distribution data, we integrated expert range maps and ecoregional ranges based on all available occurrence records. To distinguish between long-term and evolutionarily recent responses of environmental drivers in body size, we constructed a phylogenetically informed classification of all odonate species and decomposed the body size into its phylogenetic and specific components for our subset of species.

Results

We documented a weak positive relationship between body length and latitude but found strong and contrasting effects for temperature between dragonflies and damselflies and consistent positive effects for productivity that explained 35–57% of body size variation. Moreover, we showed a strong phylogenetic signal in sized-based thermoregulation that shaped the distribution of dragonflies, but not of damselflies.

Main conclusions

We concluded that temperature, productivity and conservatism in size-based thermoregulation synergistically determine the distribution of ectotherms, while the taxon-specific importance of these factors can lead to contrasting and weak latitude–size relationships. Our results reinforce the importance of body size as a determinant of species distributions and responses to climate change.  相似文献   

10.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

11.
Despite a long history of study, the mechanisms underlying the geographical patterns of species richness are still controversial. Patterns and determinants of species richness are well‐known to vary with spatial scale. However, most studies on the effects of scale have focused on grain size whereas the quantitative effects of geographical extent are rarely tested. Here, using distribution maps of 11 405 woody species found in China and associated environmental data to the domain, we investigated the influence of geographical extent on the determinants of species richness patterns. Our results revealed consistent extent dependence of all species, narrow‐ and wide‐ranged species: with the expansion of geographical extents, the explanatory power of climate (i.e. environmental energy, water availability and climatic seasonality) increased, while the explanatory power of habitat heterogeneity and human activities decreased. Although the primary determinant of species richness patterns varied significantly at small to meso‐geographical extent, we showed that species richness was predominantly determined by environmental energy at large extent. Our findings indicate that differences in geographical extent may have led to the controversies regarding the primary determinants of richness patterns in previous studies, and that a multi‐scale perspective not only with regard to grain‐size but also extent is likely to shed new light on this old debate of what determines richness patterns.  相似文献   

12.
Squamates often follow an inverse Bergmann's rule, with larger-bodied animals occurring in warmer areas or at lower latitudes. The size of dorsal scales in lizards has also been proposed to vary along climatic gradients, with species in warmer areas exhibiting larger scales, putatively to reduce heat load. We tested for these patterns in the diverse and widespread lizard genus Sceloporus. Among 106 species or populations, body size was associated positively with maximum temperature (consistent with the inverse of Bergmann's rule) and aridity, but did not covary with latitude. Scale size (inferred from the inverse relation with numbers of scales) was positively related to body size. Controlling for body size via multiple regression, scale size was associated negatively with latitude (best predictor), positively with minimum temperature, and negatively with aridity (similar results were obtained using scores from a principal components analysis of latitude and climatic indicators). Thus, lizards with larger scales are not necessarily found in areas with higher temperatures. Univariate analyses indicated phylogenetic signal for body size, scale counts, latitude, and all climate indicators. In all cases, phylogenetic regression models fit the data significantly better than nonphylogenetic models; thus, residuals for log(10) number of dorsal scale rows exhibited phylogenetic signal.  相似文献   

13.
As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.  相似文献   

14.
Mammals dominate modern terrestrial herbivore ecosystems, whereas extant herbivorous reptiles are limited in diversity and body size. The evolution of reptile herbivory and its relationship to mammalian diversification is poorly understood with respect to climate and the roles of predation pressure and competition for food resources. Here, we describe a giant fossil acrodontan lizard recovered with a diverse mammal assemblage from the late middle Eocene Pondaung Formation of Myanmar, which provides a historical test of factors controlling body size in herbivorous squamates. We infer a predominately herbivorous feeding ecology for the new acrodontan based on dental anatomy, phylogenetic relationships and body size. Ranking body masses for Pondaung Formation vertebrates indicates that the lizard occupied a size niche among the larger herbivores and was larger than most carnivorous mammals. Paleotemperature estimates of Pondaung Formation environments based on the body size of the new lizard are approximately 2–5°C higher than modern. These results indicate that competitive exclusion and predation by mammals did not restrict body size evolution in these herbivorous squamates, and elevated temperatures relative to modern climates during the Paleogene greenhouse may have resulted in the evolution of gigantism through elevated poikilothermic metabolic rates and in response to increases in floral productivity.  相似文献   

15.

Aim

Species-level traits, such as body and range sizes, are important correlates of extinction risk. However, both are often related and are driven by environmental factors. Here, we elucidated links between environmental factors, body size, range size and susceptibility to extinction, across the whole order of rodents.

Location

Global.

Time period

Current.

Major taxa studied

Rodents (order Rodentia).

Methods

We compiled an unprecedentedly large database of rodent morphology, phylogeny, range size, conservation status, global climate and normalized difference vegetation index (NDVI), comprising >86% of all described species. Using phylogenetic regressions, we initially explored the environmental factors driving body size. Next, we modelled the relationship between body size and range size. From this relationship, we computed and mapped (at the assemblage level) an index of relative range size, corresponding to the deviation from the expected range size of each species, given its body size. Finally, we tested whether relative range was correlated with the risk of extinction of the species derived from an assessment by the International Union for Conservation of Nature.

Results

We found that, contrary to the expectations of Bergmann's rule, the body size of rodents was mostly influenced by variation in NDVI (rather than latitude/temperature). Body size, in turn, imposed a constraint on species range size, as evidenced by a triangular relationship that was segmented at the lower bound. The relative species range size derived from this relationship highlighted four geographical regions where rodents with small relative range were concentrated globally. We demonstrated that lower relative range size was associated with increased risk of extinction.

Main conclusions

Species that, given their body size, are distributed across ranges that are smaller than expected have elevated extinction risk. Therefore, investigating the relationships between environmental drivers, body size and range size might help to detect species that could become threatened in the near future.  相似文献   

16.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

17.
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex‐specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south‐western France) exhibited a smaller female size and less female‐biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw‐tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body sizeclimate relationships in intraspecific units.  相似文献   

18.
Morphological characteristics reflect geographical variation resulting from adaptation to varying environmental conditions. Carnivore species distributed over a wide geographical range generally have highly polymorphic morphological variation. The raccoon dog (Nyctereutes procyonoides) has a longitudinal distribution restricted to East Asia and the northern Indochina Peninsula. Its unique geographical range makes it an appropriate model to examine how morphological differences are influenced by geography. To demonstrate morphological evolution of Russian, Chinese, Korean and Japanese raccoon dogs predicted by geographical differences, we tested the island rule and Bergmann's rule. We compared craniodental variation among populations and examined morphological implications for intraspecific taxonomic status. Insular raccoon dogs possessed substantially smaller body size than those from the mainland. Moreover, different island effects among Japanese islands were demonstrated by markedly larger occipital condyle breath in the Hokkaido population. Larger skull size in Russian and Hokkaido raccoon dogs could be explained by Bergmann's rule. Based on previous chromosomal and molecular studies and results of our morphological analyses, we suggest Japanese raccoon dogs are a distinct species from the mainland N. procyonoides.  相似文献   

19.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

20.
Nonsessile animals could partition the use of resources in different axes, reducing the effects of competition and allowing coexistence. Here, we investigated the spatial and trophic niche dimensions in four lizard assemblages in the Neotropical semiarid Caatinga to investigate the determinants of resource use and the extent to which lizards partition their niches. We sampled each lizard assemblage once, for 10 days, in the dry season of 2017 and 2018. In two lizard assemblages, we detected nonrandom niche overlap patterns that were higher or lower than expected by chance. The high niche overlap patterns suggest that either there is intense current competition for available microhabitats or an abundance of microhabitats. The lower niche overlap may be influenced by the presence of species adapted to sandy habitats (psammophilous), suggesting that spatial partitioning detected has historical basis, which is supported by the pPCA results and by the lack of patterns in the realized niche distribution of species across niche space. We detected trophic niche partitioning in three lizard assemblages. In one assemblage, we discovered random spatial and trophic niche overlap patterns, revealing that competition is not a determining factor in the structure of that assemblage. In fact, phylogenetic effects were predominantly the main determinants of resource use in the four studied lizard assemblages. Arid and semiarid habitats cover about one third of land surface of the world. Comparisons between our findings and those from other regions of the world may aid identify general trends in the lizard ecology of dry environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号