首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Venous blood lactate concentrations [1ab] were measured every 30 s in five athletes performing prolonged exercise at three constant intensities: the aerobic threshold (Thaer), the anaerobic threshold (Than) and at a work rate (IWR) intermediate between Thaer and Than. Measurements of oxygen consumption (VO2) and heart rate (HR) were made every min. Most of the subjects maintained constant intensity exercise for 45 min at Thaer and IWR, but at Than none could exercise for more than 30 min. Relationships between variations in [1ab] and concomitant changes in VO2 or HR were not statistically significant. Depending on the exercise intensity (Thaer, IWR, or Than) several different patterns of change in [1ab] have been identified. Subjects did not necessarily show the same pattern at comparable exercise intensities. Averaging [1ab] as a function of relative exercise intensity masked spatial and temporal characteristics of individual curves so that a common pattern could not be discerned at any of the three exercise levels studied. The differences among the subjects are better described on individual [1ab] curves when sampling has been made at time intervals sufficiently small to resolve individual characteristics.  相似文献   

2.
The metabolic and ventilatory responses to steady state submaximal exercise on the cycle ergometer were compared at four intensities in 8 healthy subjects. The trials were performed so that, after a 10 min adaptation period, power output was adjusted to maintain steady state VO2 for 30 min at values equivalent to: (1) the aerobic threshold (AeT); (2) between the aerobic and the anaerobic threshold (AeTAnT); (3) the anaerobic threshold (AnT); and (4) between the anaerobic threshold and VO2max (AnTmax). Blood lactate concentration and ventilatory equivalents for O2 and CO2 demonstrated steady state values during the last 20 min of exercise at the AeT, AeAnT and AnT intensities, but increased progressively until fatigue in the AnTmax trial (mean time = 16 min). Serum glycerol levels were significantly higher at 40 min of exercise on the AeAnT and the AnT when compared to AeT, while the respiratory exchange ratios were not significantly different from each other. Thus, metabolic and ventilatory steady state can be maintained during prolonged exercise at intensities up to and including the AnT, and fat continues to be a major fuel source when exercise intensities are increased from the AeT to the AnT in steady state conditions. The blood lactate response to exercise suggests that, for the organism as a whole, anaerobic glycolysis plays a minor role in the energy release system at exercise intensities upt to and including the AnT during steady state conditions.  相似文献   

3.
Aerobic and anaerobic thresholds determined by different methods in repeated exercise tests were correlated with cardiorespiratory variables and variables of muscle metabolic profile in 33 men aged 20-50 years. Aerobic threshold was determined from blood lactate, ventilation, and respiratory gas exchange by two methods (AerT1 and AerT2) and anaerobic threshold from venous lactate (AnTLa), from ventilation and gas exchange (AnTr) and by using the criterion of 4 mmol.1(-1) of venous lactate (AnT4mmol). In addition to ordinary correlative analyses, applications of LISREL models were used. The 8 explanatory variables chosen for the regression analyses were height, relative heart volume, relative diffusing capacity of the lung, muscle fiber composition, citrate synthase (CS) and succinate dehydrogenase activities, the lactate dehydrogenase--CS ratio, and age. They explained 58% of the variation in AerT1, 73.5% that of AerT2, 71% that of AnTr, 74.5% that of AnTLa, and 67.5% that of AnT4mmol.AerT and AnT alone explained 77% of the variation in each other. Both AerT and AnT were determined mainly by a muscle metabolic profile, with the CS activity of vastus lateralis as the strongest determinant. The factor 'submaximal endurance' which was measured with AerT and AnT seemed to be slightly more closely connected to 'muscle metabolic profile' than was 'maximal aerobic power' (= VO2max), but both also correlated strongly with each other (r = 0.92).  相似文献   

4.
The higher concentration during exercise at which lactate entry in blood equals its removal is known as 'maximal lactate steady state' (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in rats during swimming exercise. Adult male Wistar rats, which were adapted to water for 3 weeks, were used. After this, the animals were separated at random into groups and submitted once a week to swimming sessions of 20 min, supporting loads of 5, 6, 7, 8, 9 or 10% of body wt. for 6 consecutive weeks. Blood lactate was determined every 5 min to find the MLSS. Sedentary animals presented MLSS with overloads of 5 and 6% at 5.5 mmol/l blood lactate. There was a significant (P<0.05) increase in blood lactate with the other loads. In another set of experiments, rats of the same strain, sex and age were submitted daily to 60 min of swimming with an 8% body wt. overload, 5 days/week, for 9 weeks. The rats were then submitted to a swimming session of 20 min with an 8% body wt. overload and blood lactate was determined before the beginning of the session and after 10 and 20 min of exercise. Sedentary rats submitted to the same acute exercise protocol were used as a control. Physical training did not alter the MLSS value (P<0.05) but shifted it to a higher exercise intensity (8% body wt. overload). Taken together these results indicate that MLSS measured in rats in the conditions of the present study was reproducible and seemed to be independent of the physical condition of the animals.  相似文献   

5.
6.
7.
The reliability of the lactate threshold (LT) determined in aged rats and its validity to identify an exercise intensity corresponding to the maximal blood lactate steady state (MLSS) were analyzed. Eighteen male aged Wistar rats (~365 days) were submitted to two incremental swimming tests until exhaustion, consisting of an initial load corresponding to 1% of body mass (BM) and increments of 1% BM at each 3‐min with blood lactate ([lac]) measurements. The LT was determined by visual inspection (LTV) as well by applying a polynomial function on the [lac]/workload ratio (LTP) by considering the vertices of the curve. For the MLSS, twelve animals were submitted, on different days, to 3–4 exercise sessions of 30‐min with workload corresponding to 4, 5 or 6% BM. The MLSS was considered the highest exercise intensity at which the [lac] variation was not higher than 0.07 mM.min?1 during the last 20‐min. No differences were observed for the test‐retest results (4.9 ± 0.7 and 5.0 ± 0.8 %BM for LTv; and 6.0 ± 0.6 and 5.8 ± 0.6 %BM for LTp) that did not differ from the MLSS (5.4 ± 0.5 %BM). The LT identified for aged rats in swimming, both by visual inspection and polynomial function, was reliable and did not differ from the MLSS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 +/- 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 +/- 1.4 km.h(-1)) and MLSS (13.1 +/- 1.2 km.h(-1)) and between OBLA and CV (14.4 +/- 1.1 km.h(-1)). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity.  相似文献   

11.
Maximal blood lactate steady state concentration (MLSS) and anaerobic threshold (AT) have been shown to accurately predict long distance events performance and training loads, as well, in human athletes. Horse endurance races can take up to 160 km and, in practice, coaches use the 4 mM blood lactate concentration, a human based fixed concentration to establish AT, to predict training loads to horse athletes, what can lead to misleading training loads. The lactate minimum speed (LMS) protocol that consists in an initial elevation in blood lactate level by a high intensity bout of exercise and then establishes an individual equilibrium between lactate production and catabolism during progressive submaximal efforts, has been proposed as a nonfixed lactate concentration, to measure individual AT and at the same time predicts MLSS for human long distance runners and basketball players as well. The purpose of this study was to determine the reliability of the LMS protocol in endurance horse athletes. Five male horses that were engaged on endurance training, for at least 1 year of regular training and competition, were used in this study. Animals were submitted to a 500 m full gallop to determine each blood lactate time to peak (LP) after these determinations, animals were submitted to a progressive 1000 m exercise, starting at 15 km h(-1) to determine LMS, and after LMS determination animals were also submitted to two 10,000 m running, first at LMS and then 10% above LMS to test MLSS accuracy. Mean LP was 8.2+/-0.7 mM at approximately 5.8+/-6.09 min, mean LMS was 20.75+/-2.06 km h(-1) and mean heart rate at LMS was 124.8+/-4.7 BPM. Blood lactate remained at rest baseline levels during 10,000 m trial at LMS, but reached a six fold significantly raise during 10% above LMS trial after 4000 and 6000 m (p<0.05) and (p<0.01) after 8000 and 10,000 m. In conclusion, our adapted LMS protocol for horse athletes proposed here seems to be a reliable method to state endurance horse athletes LT and MLSS.  相似文献   

12.
In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.  相似文献   

13.
The aim of this study was to estimate the characteristic exercise intensity CL which produces the maximal steady state of blood lactate concentration (MLSS) from submaximal intensities of 20 min carried out on the same day and separated by 40 min. Ten fit male adults [maximal oxygen uptake max 62 (SD 7) ml · min–1 · kg–1] exercisOed for two 30-min periods on a cycle ergometer at 67% (test 1.1) and 82% of max (test 1.2) separated by 40 min. They exercised 4 days later for 30 min at 82% of max without prior exercise (test 2). Blood lactate was collected for determination of lactic acid concentration every 5 min and heart rate and O2 uptake were measured every 30 s. There were no significant differences at the 5th, 10th, 15th, 20th, 25th, or 30th min between , lactacidaemia, and heart rate during tests 1.2 and 2. Moreover, we compared the exercise intensities CL which produced the MLSS obtained during tests 1.1 and 1.2 or during tests 1.1 and 2 calculated from differential values of lactic acid blood concentration ([1a]b) between the 30th and the 5th min or between the 20th and the 5th min. There was no significant difference between the different values of CL [68 (SD 9), 71 (SD 7), 73 (SD 6),71 (SD 11) % of max (ANOVA test,P<0.05). Four subjects ran for 60 min at their CL determined from periods performed on the same day (test 1.1 and 1.2) and the difference between the [la]b at 5 min and at 20 min ( ([la]b)) was computed. The [la]b remained constant during exercise and ranged from 2.2 to 6.7 mmol · l–1 [mean value equal to 3.9 (SD 1) mmol · l–1]. These data suggest that the CL protocol did not overestimate the exercise intensity corresponding to the maximal fractional utilization of max at MLSS. For half of the subjects the CL was very close to the higher stage (82% of max where an accumulation of lactate in the blood with time was observed. It can be hypothesized that CL was very close to the real MLSS considering the level of accuracy of [la]b measurement. This study showed that exercise at only two intensities, performed at 65% and 80% of max and separated by 40 min of complete rest, can be used to determine the intensity yielding a steady state of [la–1]b near the real MLSS workload value.  相似文献   

14.
Investigations using nonsteady-state and fatiguing exercise protocols have demonstrated a strong relationship between ammonia and lactate metabolism and have suggested a cause and effect relationship between these two variables. We investigated the lactate-ammonia response using prolonged exercise and inspiration of hyperoxic gas (60% O2-40% N2). The exercise consisted of either 70-75% maximal O2 uptake (VO2 max) for 40 min (series 1, n = 6) or 75-80% VO2max for 30 min (series 2, n = 6) with the subjects inspiring room air on one occasion and hyperoxia in the other test. In both series blood ammonia rose continuously throughout the exercise regardless of the inspired gas treatment; in contrast blood lactate did not increase after 10 min with room air, and with hyperoxia blood lactate was reduced. Muscle lactate and ammonia (series 2; vastus lateralis) had responses similar to the blood data. The data demonstrated no apparent lactate-ammonia relationship with prolonged exercise or in response to hyperoxia, suggesting that ammonia production can be independent of lactate metabolism. The data also suggest that type I fibers can be a major source of ammonia in humans.  相似文献   

15.
Beta-endorphin (beta-End) and adrenocorticotrophic hormone (ACTH) were determined in the peripheral blood of 14 human volunteers exercising on a bicycle ergometer. After 1 h of submaximal work below anaerobic threshold (AT), defined as the 4 mmol X l-1 lactic acid level in arteriolar blood (Kindermann 1979; Mader 1980), beta-End and ACTH levels did not change from control conditions. Eleven of the same 14 subjects performed an uninterrupted graded exercise test on the same bicycle ergometer until exhaustion. This time beta-End and ACTH levels increased concomitantly with exercise of high intensity: at each moment, during and after this maximal test, a highly significant correlation (P less than 0.0001) was noted between the levels of beta-End and ACTH. The peak values of these hormones were reached within 10 min after stopping maximal exercise, and coincided with lactic acid peak levels. A rise in lactic acid levels above the anaerobic threshold always preceded the exercise-induced rise in beta-End and ACTH. Within the population tested, two subgroups could be distinguished: one comprising individuals whose hormonal response nearly coincided with the rise in lactic acid (rapid responders) and a second group composed of subjects whose normal response appeared delayed with respect to the lactic acid rise (slow responders). These results support the view that beta-End and ACTH are secreted in equimolar quantities into the blood circulation in response to exercise, and suggest that metabolic changes of anaerobiosis play a key role in the regulation of stress-hormone release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
Five normal men, aged 23 to 35 years, participated in two bouts of continuous aerobic cycling separated by five days. The first type of exercise (EI) was cycling at a pedalling frequency of 50 rev X min-1 with a load which produced a steady state O2 uptake of approximately 40% of the subjects' VO2max. The second type of exercise (EII) was cycling at a pedalling frequency of 90 rev X min-1 with a load such that an equal steady state VO2 was reached and maintained. Both EI and EII lasted 40 min. GH levels increased in EI and EII, reaching their maximum at 8 min of recovery (245 and 300% of resting values, respectively). No significant differences were observed between EI and EII in GH, lactate, glucagon, insulin, cortisol and glucose levels between the two exercises. While it has been reported earlier that GH levels were frequently related to lactate levels and/or decreased O2 availability (Sutton 1977; Raynaud et al. 1981; Kozlowski et al. 1983; VanHelder et al. 1984a, b), this study suggests that the opposite is also valid, that is, different types of exercise of equal VO2, duration and lactate production do not produce significantly different GH responses.  相似文献   

19.
The purpose of the present study was to contrive a new practical method for estimating total O2 uptake during exercise from total heart beats after individual evaluation of aerobic fitness levels. Twenty healthy male subjects participated in cycle ergometer tests, maximal O2 uptake (VO2max) tests and various simple tests including simple endurance tests. From the cycle ergometer results, the following formula for estimating total O2 uptake in exercise was determined: TVO2 (ml X kg-1) = SR125 X (45.8 X mean HR + 4268) X THB X 10(-4) where TVO2, THB, and mean HR are total O2 uptake, total heart beats, and mean heart rate (beats X min-1) in exercise, respectively, and SR125 is the slope of the regression line between accumulated heart beats and accumulated O2 uptake during exercise at 125 beats X min-1 of mean HR. SR125 had a significant correlation not only with VO2max but also with each score (X) in any simple endurance tests such as, for example, a step test for 2 min. In this case, accordingly, SR125 can be found as; SR125 = -0.00118X + 0.3478. These formulae indicate that the total O2 uptake of any exercising subject can be estimated from his total heart beats regardless of intensities of exercise when his aerobic fitness level is evaluated by the simple endurance test. The total O2 uptake estimated by our method was compared to that measured by the Douglas bag method, and the discrepancy between the two results was less than the errors of values estimated by traditional methods.  相似文献   

20.
The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号