首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear and cyclic analogues of cyclolinopeptide A (CLA) with two dipeptide segments (Val(5)-Pro(6) and Pro(6)-Pro(7)) replaced by their tetrazole derivatives were synthesized by the SPPS technique and cyclized using TBTU (O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) reagent. The conformational properties of the c(Leu(1)-Ile(2)-Ile(3)-Leu(4)-Val(5)-Pro(6)-psi[CN(4)]-Ala(7)-Phe(8)-Phe(9)) were investigated by NMR and computational techniques. The overall solution structure of this cyclic peptide resembles that observed for the CLA in the solid state. These studies of cyclic tetrazole CLA analogue confirm that the 1,5-disubstituted tetrazole ring functions as an effective, well-tolerated cis-amide bond mimic in solution. The peptides were examined for their immunosuppressive activity in the humoral response test. For cyclic analogues the immunosuppressive activity, at low doses, is equal in magnitude to the activity presented by cyclosporin A and native CLA. The conformational and biological data seem indicate that the Pro-Pro-Phe-Phe moiety and the preservation of the CLA backbone conformation are important for immunosuppressive activity.  相似文献   

2.
A backbone bridged and disulfide bridged bicyclic somatostatin analogue, compound 1 (PTR-3205), was designed and synthesized by solid-phase methodology. The binding of compound 1 to the five different somatostatin receptors, expressed in CHO or COS-7 cells, indicate a high degree of selectivity towards hsstr2. The three-dimensional structure of this compound has been determined in DMSO-d6 and in water by 1H NMR and by molecular dynamics simulations. Similar backbone conformations were observed in both solvents. We have established direct evidence that the backbone of this bicyclic somatostatin analogue assumes a ‘folded’ conformation in solution, where the lactam ring extends roughly in the plane of the β-turn. The pharmacophoric region Phe-(d)-Trp-Lys-Thr of compound 1 is in accord with that of both the Veber compound L-363,301 (Merck) and sandostatin. We believe that the enhanced selectivity towards the hsst2 receptor, in comparison with other analogues, is due to its large hydrophobic region, composed of the lactam ring and the Phe side chains at positions 1 and 8.  相似文献   

3.
The structures and conformational peculiarities of five members of the callatostatin family of neuropeptides, i.e. Leu- and Met-callatostatins, ranging in size from 8 to 16 amino acid residues have been investigated by a theoretical conformational analysis method. A comparative analysis of the conformational flexibilities of Met-callatostatin with those of the hydroxylated analogues, [Hyp2]- and [Hyp3]-Met-callatostatin has been carried out. Helically packed C-terminal pentapeptide in the structure of all investigated Leu-callatostatins are shown to be possible. The reason for the great number low-energy conformers for the callatostatin N-terminus is discussed.  相似文献   

4.
The conformational behavior of methyl(2-O-methyl-alpha-L-rhamnopyranosyl)phosphate, together with a group of potentially more stable analogues, was investigated through a DFT approach at the B3LYP/6-31G(d) level; the energy of all the optimized structures was recalculated using a continuum solvent model, C-PCM, choosing water as the solvent. The compounds exhibited several, sometimes tenths of populated conformations so that the overall properties of flexibility and mobility were evaluated. The analogue in which the pyranose oxygen atom is replaced by a methylene group emerges as the best candidate as a mimic of the reference 1-phosphate, in spite of the fact that it lacks the anomeric and exo-anomeric effects. The other analogues result poorer mimics because of a conformational equilibrium at the pyranose ring or of an excessive rigidity of the aglycone moiety.  相似文献   

5.
In a continuation of our program to study the structure-activity relationship of peptide opiates, we report the conformational analysis of two cyclic tetrapeptides related to dermorphin--Tyr-c[D-Orn-Phe-Asp]-NH2 and Tyr-c[D-Asp-Phe-Orn]-NH2. These analogues have similar binding properties marked by a high selectivity for the mu-opioid receptors because of a drastic decrease in the affinity for the delta-opioid receptor. The conformational preferences of these analogues of dermorphin determined from proton nmr, molecular dynamics, and energy minimizations are quite similar. The constraint of the 13-membered ring formed from cyclization is quite evident from the conformational analysis. The constrained ring system acts as a template maintaining the relative orientation of the exocyclic tyrosine and side chain of phenylalanine. Two intramolecular hydrogen bonds measured for the D-Orn analogue in DMSO were disrupted upon the addition of water. For the D-Asp analogue, two intramolecular hydrogen bonds were found stable in DMSO and water. The global conformations of the two peptides determined from nuclear Overhauser effects did not change with the solvent titration. The difference in the hydrogen bonding within the 13-membered ring may account for the slight differences observed in the efficacy of the analogues at the mu-opioid receptors.  相似文献   

6.
The C-1'-dithiolane Delta(8)-tetrahydrocannabinol (Delta(8)-THC) amphiphilic analogue (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-1,3-dithiolane (AMG3) is considered as one of the most potent synthetic analgesic cannabinoid (CB) ligands. Its structure is characterized by rigid tricyclic and flexible alkyl chain segments. Its conformational properties have not been fully explored. Structure-activity relationship (SAR) studies on classical CBs showed that the alkyl side chain is the most critical structural part for the receptor activation. However, reported low energy conformers of classical CB analogues vary mainly in the conformation of their alkyl side chain segment. Therefore, comparative molecular dynamics (MD) simulations of low energy conformers of AMG3 were performed in order to investigate its structural and dynamical properties in two different systems. System-I includes ligand and amphoteric solvent DMSO, simulating the biological environment and system-II includes ligand at active site of the homology models of CB1 and CB2 receptors in the solvent. The trajectory analysis results are compared for the systems I and II. In system-I, the dihedral angle defined between aromatic ring and dithiolane ring of AMG3 shows more resistance to be transformed into another torsional angle and the dihedral angle adjacent to dithiolane ring belonging in the alkyl chain has flexibility to adopt gauche+/- and trans dihedral angles. The rest of the dihedral angles within the alkyl chain are all trans. These results point out that wrapped conformations are dynamically less favored in solution than linear conformations. Two possible plane angles defined between the rigid and flexible segments are found to be the most favored and adopting values of approximately 90 degrees and approximately 140 degrees. In system-II, these values are approximately 90 degrees and approximately 120 degrees. Conformers of AMG3 at the CB1 receptor favor to establish a cis conformation defined between aromatic and dithiolane ring and a trans conformation in the CB2 receptor. These different orientations of ligand inside the binding pocket of CB1 and CB2 receptors may explain its different binding affinity in the two receptors. The results of this study can be applied to other synthetic classical CB ligands to produce low energy conformations and can be of general use for the molecules possessing flexible alkyl chain(s). In addition, this study can be useful when restraint of the alkyl chain is sought for optimizing drug design.  相似文献   

7.
S Yokoyama  F Inagaki  T Miyazawa 《Biochemistry》1981,20(10):2981-2988
An advanced method was developed for lanthanide-probe analyses of the conformations of flexible biomolecules such as nucleotides. The new method is to determine structure parameters (such as internal-rotation angles) and population parameters for local conformational equilibria of flexible sites, together with standard deviations of these parameters. As the prominent advantage of this method, the interrelations among local conformations of flexible sites may be quantitatively elucidated from the experimental data of lanthanide-induced shifts and relaxations and vicinal coupling constants. As a structural unit of ribonucleic acids, the molecular conformations and conformational equilibria of uridine 3'-monophosphate in aqueous solution were analyzed. The stable local conformers about the C3'-O3' bond are the G+ (phi' = 281 +/- 11 degrees) and G- (phi' = 211 +/- 8 degrees) forms. The internal rotation about the C3'-O3' bond and the ribose-ring puckering are interrelated; 97 +/- 5% of the C3'-endo ribose ring is associated with the G- form while 70 +/- 22% o the C2'-endo ribose ring is associated with the G+ form. An interdependency also exists between the internal rotation about the C4'-C5' bond and the ribose-ring puckering. These short-range conformational interrelations are probably important in controlling the dynamic aspects of ribonucleic acid structures.  相似文献   

8.
Cyclic 12-, 13- and 14-membered ring angiotensin II analogues related to disulfides but encompassing methylene-dithioether bridges have been prepared. The affinity data from these derivatives were compared to those from the disulfides. The methylenedithioether analogues displayed good binding affinities to rat liver AT1 receptors although in most cases somewhat lower than their disulfide counterparts. One of the methylenedithioethers with a 13-membered ring system demonstrated the highest binding affinity among the thioethers. Theoretical conformational analysis of model compounds of the two series were performed suggesting a similarity between the disulfide and the corresponding methylenedithioether analogues and also between the ring size homologues. This analysis also suggested that some of the model compounds were prone to adopt inverse gamma-turn conformations, which was further supported by use of NMR spectroscopy of the 12-membered ring analogue in the series. The easily executed methylenedithioether cyclization should constitute a valuable complement to the common disulfide methodology for fine-tuning and for probing the bioactive conformation of peptides.  相似文献   

9.
The conformational profile of the eight stereoisomeric 2-amino-3-phenylnorbornane-2-carboxylic acids (2-amino-3-phenylbicyclo[2.2.1]heptane-2-carboxylic acids) has been assessed by computational methods. These molecules constitute a series of four enantiomeric pairs that can be considered as rigid analogues of either L- or D-phenylalanine. The conformational space of their N-acetyl methylamide derivatives has been explored within the molecular mechanics framework, using the parm94 set of parameters of the AMBER force field. Local minimum energy conformations have been further investigated at the ab initio level by means of the Hartree-Fock and second order Moller-Plesset perturbation energy calculations using a 6-31G(d) basis set. The results of the present work suggest that the bulky norbornane structure induces two kinds of conformational constraints on the residues. On one hand, those of a steric nature directly imposed by the bicycle on the peptide backbone and, on the other hand, those that limit the orientations attainable by the phenyl ring which, in turn, reduces further the flexibility of the peptide backbone. A comparative analysis of the conformational profile of the phenylnorbornane amino acids with that of the norbornane amino acids devoid of the beta-phenyl substituent suggests that the norbornane system hampers the residue to adopt extended conformations in favour of C7-like structures. However, the bicycle itself does not impart a clear preference for any of the two possible C7 minima. It is the aromatic side chain, which is forced to adopt an almost eclipsed orientation, that breaks this symmetry introducing a marked preference for a single region of the (phi, psi) conformational space in each of the phenylalanine norbornane analogues investigated.  相似文献   

10.
Conformational studies of nociceptin (NC-NH2), its fully active fragment, NC(1-13)-NH2, and two significantly less potent fragments, NC(1-13)-OH and NC(1-11)-OH, were conducted in water and TFE solutions by the employment of circular dichroism, and in DMSO-d6 by 2DNMR spectroscopy in conjunction with theoretical conformational analysis. The conformations of all thepeptides studied were calculated taking two approaches. The first assumes multiconformational equilibrium of the peptide studied, which is characterized by a set of conformations (and their statistical weight values)obtained from a global conformational analysis using three methods: the electrostatically driven Monte-Carlo (EDMC) with the ECEPP/3 force field, the simulated annealing (SA) protocols in the AMBER and CHARMM force fields. The second approach incorporates the interproton distance and dihedral angle constraints into the starting conformation. Calculations were performed using the distance geometry and SA protocol in the CHARMM force field implemented in the X-PLOR program. The CD experiments indicated that for the active peptides, hydrophobic solvents induced a significantly higher (compared with those remaining)content order, probably a helical structure. Unfortunately, as a result of the conformational flexibility of thepeptides, the analysis of conformations obtained with both approaches and different force fields did not alllow the selection of any structural elements of the NC peptides that might be connected with their bioactivity. The only common element found in most conformations of the active peptides was a helical character of fragment 8-13, which allowed the side chains of basic amino acid residues to be exposed to the outside of the molecule and probably to interact with the ORL1 receptor.  相似文献   

11.
The spatial structure of a neurokinin B molecule was investigated by the method of theoretical conformational analysis. The conformational analysis of this molecule indicated that the possible structure of neurokinin B under polar conditions may be described by five families of low-energy conformations possessing a conformationally relatively rigid C-terminal heptapeptide and variable N-terminal fragments.  相似文献   

12.
Two analogs of a tachykinin family peptides - scyliorhinin II (ScyII): [Aib(16)]ScyII and [Sar(16)]ScyII were synthesized by the solid-phase method using Fmoc chemistry. Conformational studies in water and DMSO-d(6) on these peptides were performed using a combination of two-dimensional NMR and theoretical conformational analysis. The solution structure of the peptides studied is interpreted as an equilibrium of several conformers with different statistical weights. The structure of [Sar(16)]ScyII in water appeared to be more flexible, especially in the C-terminal fragment. A better defined structure for this analog was obtained in DMSO-d(6), in which the analysis resulted in a family of conformers with similar shapes. Some of these conformers were characterized by the presence of a 3(10)-helix in the N-terminal fragment and middle part of the molecule. The introduction of the Aib residue in position 16 significantly rigidifies the structure. For [Aib(16)]ScyII in both solvent systems very similar populations of conformations were obtained which are characterized by the presence of a 3(10)-helix in the 13-18 fragment. A common structural motif was found in conformationally constrained Cys(7)-Cys(13) fragment, which resembles the Greek letter 'omega'. The differences in the solution structure of the C-terminal fragment of the peptides studied are responsible for their specificity. [Aib(16)]ScyII showed 25% the agonistic activity of selective NK-3 agonist - senktide, but it also showed antagonist effect vs. this peptide, whereas [Sar(16)]ScyII appeared to be a full agonist of NK-3 tachykinin receptor.  相似文献   

13.
The conformational properties in DMSO of two head-to-tail cyclic analogues of kallidin ([Lys(0)]-bradykinin, KL) as well as those of the corresponding linear peptides were studied by NMR and molecular dynamics (MD) simulations. The modifications in the sequence were introduced at position 6, resulting in the four peptides, [Tyr(6)]-KL (YKL), [Trp(6)]-KL (WKL), cyclo-([Tyr(6)]-KL) (YCKL) and cyclo-([Trp(6)]-KL) (WCKL).The linear WKL analogue was significantly more potent than kallidin on rat duodenum preparations, whereas YKL was significantly less potent. Both cyclic peptides, YCKL and WCKL displayed similar activity, lower than that of the linear analogues and also of cyclo-KL.The two linear analogues display high conformational flexibility in DMSO. In the predominant conformer, for both peptides, all three X-Pro bonds adopt a trans configuration. Three out of four conformers present in YCKL and WCKL were completely assigned. The configurations at the X-Pro bonds are the same for the two analogues. All cyclic conformers show a cis configuration in at least one X-Pro bond and always opposite configuration for the two consecutive X-Pro bonds.The NOE-restrained MD calculations resulted in the detection of several elements of secondary structure in each of the conformers. Such elements are described and their possible relevance to biological activity is discussed.  相似文献   

14.
All the signals in the 1H and 13C NMR spectra of some analogues of 7alpha-methyl-8alpha- and 6-oxa-8alpha-steroid estrogens were completely assigned. Considering the values of nuclear Overhauser effect and vicinal coupling constants, these steroids were shown to exhibit a fast, on the NMR time scale, conformational equilibrium arising due to the inversion of ring B. The conformer populations were obtained from a comparison of the experimental and theoretical values of the dihedral angles and the interproton distances. This conformational equilibrium was shown to depend on the nature of atom in position 6: for the 7alpha-methyl-6-oxa-8alpha analogues of the steroid estrogens, the population of the conformer with the pseudoaxial orientation of the 7alpha-methyl group was observed to be decreased compared with the 7alpha-methyl-8alpha analogue.  相似文献   

15.
M Hassan  M Goodman 《Biochemistry》1986,25(23):7596-7606
Molecular dynamics simulations and energy minimization studies of cyclic enkephalin analogues incorporating retro-inverso modifications have been carried out. The dynamic trajectories are analyzed in terms of the relative mobility of the 14-membered rings, conformational transitions among equilibrium states, and hydrogen-bonding patterns. The cyclization of the molecules reduces the motion of the ring structures substantially. Time-correlated conformational transitions resulting in the reorientation of peptide units are observed. Hydrogen bonds form principally C7 structures. Because of the incorporation of retro-inverso residues, C6 and C8 structures are also formed. Starting conformations for energy minimizations were obtained from the molecular dynamics simulations and from a systematic search of the conformational space available to the molecules. Several minimum energy backbone and side-chain conformations were found for each analogue. The effect of retro-inverso residues on hydrogen-bonding patterns and backbone conformations is discussed.  相似文献   

16.
A Gupta  V S Chauhan 《Biopolymers》1990,30(3-4):395-403
Three model dipeptides containing a dehydroalanine residue (delta Ala) at the C-terminal, Boc-X-delta Ala-NHCH3 [X = Ala, Val, and Phe,] have been synthesized and their solution conformations investigated by 1H-NMR, IR, and CD spectroscopy. NMR studies on these peptides in CDCl3 clearly indicate that the NH group of dehydroalanine is involved in an intramolecular hydrogen bond. This conclusion is supported by IR studies also. Nuclear Overhauser effect (NOE) studies are also accommodative of an inverse gamma-turn-type of conformation that is characterized by conformational angles of phi approximately -70 degrees and psi approximately +70 degrees around the X residue, and a C alpha i + 1 H-Ni + 2H interproton distance of 2.5 A. It appears that unlike dehydrophenylalanine or dehydroleucine, which tend to stabilize beta-turn type of structures occupying the i + 2 position of the turn, dehydroalanine favors the formation of an inverse gamma-turn, centered at the preceding L-residue in such solvents as CDCl3 and (CD3)2SO. A comparison of solution conformation of Boc Val-delta Ala-NHCH3 with the corresponding saturated analogue, Boc-Val-Ala-NHCH3, is also presented and shows that dehydroalanine is responsible for inducing the turn structure. It may be possible to design peptides with different preferred conformations using the suitable dehydroamino acid.  相似文献   

17.
Eight conformers typical of diketopiperazine (DKP) ring folding were chosen for analysis. Conformational energy calculations were carried out using the semiempirical quantummechanical CNDO/2 method. The results obtained confirm considerable flexibility of the DKP skeleton. As the degree of folding increases, twisted boat conformations with the nonplanar peptide bonds tend to be more stable, while more rigid regular boat conformations with planar peptide bonds appear to be less stable than a flat one. The CNDO/2 method was found to be reliable enough for conformational studies of cyclic peptide skeletons with cis-peptide bonds.  相似文献   

18.
The third repeat fragment (R3) in the four-repeat microtubule-binding domain of the water-soluble tau protein has been considered to play an essential role in the protein's filamentous assembly. To clarify the associational and conformational features that differentiate R3 from the second repeat, R2, the heparin-induced assembly profiles of these peptide fragments were monitored by the thioflavin fluorescence method and electron microscopy. The trifluoroethanol-induced reversible conformational change from a random structure to an alpha-helical structure, in an aqueous solution, was monitored by CD measurement, and the structure of R2 in trifluoroethanol solution was analyzed by a combination of two-dimensional 1H-NMR measurements and molecular modeling calculations to facilitate comparison with the structure of R3. The speed of R3 assembly was remarkably faster than that of R2, in spite of their similar amino acid sequences. The averaged NMR conformers of R2 exhibited the whole-spanning alpha-helical structure. Similar features observed in R2 and R3 conformers in trifluoroethanol were that the Leu10-Leu20/Lys20 sequence takes a helical structure with the amphipathic-like distribution of the respective side-chains, whereas the C-terminal moieties are both flexible. In contrast, a notable difference was observed at the N-terminal Val1-Lys6 sequence, namely, a helical conformation for R2 and an extended conformation for R3. These conformational behaviors would be associated with the different self-aggregation speeds and seeding reactions between R2 and R3.  相似文献   

19.
Tetrahydropterins are obligatory cofactors for tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. A series of synthetic analogues of 6(R)-L-erythro-5,6,7, 8-tetrahydrobiopterin (BH(4)) with different substituents in positions C2, N3, C4, N5, C6, C7, and N8 on the ring were used as active site probes for recombinant human TH. The enzyme tolerates rather bulky substituents at C6, as seen by the catalytic efficiency (V(max)/K(m)) and the coupling efficiency (mol of L-DOPA produced/mol of tetrahydropterin oxidized) of the cofactors. Substitutions at C2, C4, N5, and N8 abolish the cofactor activity of the pterin analogues. Molecular docking of BH(4) into the crystal structure of the catalytic domain of ligand-free rat TH results in complexes in which the pteridine ring pi-stacks with Phe300 and the N3 and the amino group at C2 hydrogen bonds with Glu332. The pteridine ring also establishes interactions with Leu294 and Gln310. The distance between C4a in the pteridines and the active site iron was 4.2 +/- 0.5 A for the ensemble of docked conformers. Docking of BH(4) analogues into TH also shows that the most bulky substituents at C6 can be well-accommodated within the large hydrophobic pocket surrounded by Ala297, Ser368, Tyr371, and Trp372, without altering the positioning of the ring. The pterin ring of 7-BH(4) shows proper stacking with Phe300, but the distance between the C4a and the active site iron is 0.6 A longer than for bound BH(4), a finding that may be related to the high degree of uncoupling observed for 7-BH(4).  相似文献   

20.
The analogues of oxytocin and [1-penicillamine]oxytocin, containing a cycloleucine (Cle) residue in position 2 or 8, were investigated by means of circular dichroism measurements in different solvents, and the results examined in terms of their biological activities. A cycloleucine residue in position 2 substantially reduces the free conformational space of the hormone 20-membered ring moiety (including the disulfide group), and stabilizes a conformation which is close to one of the possible conformations of oxytocin and involves a -turn. In position 8, the Cle residue affects the conformation of the Tyr2 side chain, apparently forcing it away from the space above the 20-membered disulfide ring. However, it does not appear that the Cle residue has any significant effect on the overall backbone conformation of the hormone. The steric effect of the penicillamine residue in position 1 on the conformation of the disulfide group and Tyr2 side chain from previous investigations is further confirmed. The synthesis and biological potency of [1-penicillamine, 8-cycloleucine]oxytocin is described. This analogue exhibits a strong inhibitory effect on the uterotonic activity of oxytocinin vitro. It also inhibited the vasopressor response to vasopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号