首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations of CIAS1 have recently been shown to underlie familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS), in three families and one family, respectively. These rare autosomal dominant diseases are both characterized by recurrent inflammatory crises that start in childhood and that are generally associated with fever, arthralgia, and urticaria. The presence of sensorineural deafness that occurs later in life is characteristic of MWS. Amyloidosis of the amyloidosis-associated type is the main complication of MWS and is sometimes associated with FCU. In FCU, cold exposure is the triggering factor of the inflammatory crisis. We identified CIAS1 mutations, all located in exon 3, in nine unrelated families with MWS and in three unrelated families with FCU, originating from France, England, and Algeria. Five mutations--namely, R260W, D303N, T348M, A439T, and G569R--were novel. The R260W mutation was identified in two families with MWS and in two families with FCU, of different ethnic origins, thereby demonstrating that a single CIAS1 mutation may cause both syndromes. This result indicates that modifier genes are involved in determining either a MWS or a FCU phenotype. The finding of the G569R mutation in an asymptomatic individual further emphasizes the importance of such modifier a gene (or genes) in determining the disease phenotype. Identification of this gene (or these genes) is likely to have significant therapeutic implications for these severe diseases.  相似文献   

2.

Introduction  

Muckle-Wells syndrome (MWS) is an inherited autoinflammatory disease characterized by fever, rash, arthralgia, conjunctivitis, sensorineural deafness and potentially life-threatening amyloidosis. The NLRP3/CIAS1 E311K mutation caused a heterogeneous phenotype of MWS in a large family. This study analyzes the clinical spectrum, patterns of inflammatory parameters and reports on response to treatment.  相似文献   

3.

Objectives

Muckle-Wells syndrome (MWS) is an autoinflammatory disease characterized by excessive interleukin-1 (IL-1) release, resulting in recurrent fevers, sensorineural hearing loss, and amyloidosis. IL-1 inhibition with anakinra, an IL-1 receptor antagonist, improves clinical symptoms and inflammatory markers. Subclinical disease activity is commonly observed. Canakinumab, a fully human IgG1 anti-IL-1β monoclonal antibody, can abolish excess IL-1β. The study aim was to analyze the efficacy and safety of these two anti-IL-1 therapies.

Methods

Two cohorts of patients with severe MWS and confirmed NLRP3 mutation were treated with anakinra and/or canakinumab. Clinical and laboratory features including ESR, CRP, SAA, and the neutrophil marker S100A12 were determined serially. Disease activity was captured by MWS disease activity scores (MWS-DAS). Remission was defined as MWS-DAS ≤5 plus normal CRP and SAA. Treatment efficacy and safety were analyzed.

Results

The study included 12 anakinra- and 14 canakinumab-treated patients; the median age was 33.5 years (3.0 years to 72.0 years); 57% were female patients. Both treatment regimens led to a significant reduction of clinical disease activity and inflammatory markers. At last follow-up, 75% of anakinra-treated and 93% of canakinumab-treated patients achieved remission. During follow-up, S100A12 levels mirrored recurrence of disease activity. Both treatment regimens had favorable safety profiles.

Conclusions

IL-1 blockade is an effective and safe treatment in MWS patients. MWS-DAS in combination with MWS inflammatory markers provides an excellent monitoring tool set. Canakinumab led to a sustained control of disease activity even after secondary failure of anakinra therapy. S100A12 may be a sensitive marker to detect subclinical disease activity.  相似文献   

4.
We report gene localization in a family with a benign autosomal dominant familial periodic fever (FPF) syndrome characterized by recurrent fever associated with abdominal pain. The clinical features are similar to the disorder previously described as familial Hibernian fever, and they differ from familial Mediterranean fever (FMF) in that FPF episodes usually do not respond to colchicine and FPF is not associated with amyloidosis. Frequent recombination with the marker D16S2622, <1 Mb from FMF, at 16p13.3, excluded allelism between these clinically similar conditions. Subsequently, a semiautomated genome search detected linkage of FMF to a cluster of markers at 12p13, with a multipoint LOD score of 6.14 at D12S356. If penetrance of 90% is assumed, the FPF gene maps to a 19-cM interval between D12S314 and D12S364; however, if complete penetrance is assumed, then FPF maps to a 9-cM region between D12S314 and D12S1695. This interval includes the dentatorubropallidoluysian atrophy locus, which, with FPF, gave a maximum two-point LOD score of 3.7 at a recombination fraction of 0. This is the first of the periodic-fever genes, other than FMF, to be mapped. Positional candidate genes may now be selected for mutation analysis to determine the molecular basis for FPF. Together with the recent identification of the defective gene in FMF, identification of a gene for FPF might provide new insights into the regulation of inflammatory responses.  相似文献   

5.
Familial cold urticaria (FCU) is a rare autosomal dominant inflammatory disorder characterized by intermittent episodes of rash with fever, arthralgias, conjunctivitis, and leukocytosis. These symptoms develop after generalized exposure to cold. Some individuals with FCU also develop late-onset reactive renal amyloidosis, which is consistent with Muckle-Wells syndrome. By analyzing individuals with FCU from five families, we identified linkage to chromosome 1q44. Two-point linkage analysis revealed a maximum LOD score (Zmax) of 8.13 (recombination fraction 0) for marker D1S2836; multipoint linkage analysis identified a Zmax of 10. 92 in the same region; and haplotype analysis defined a 10.5-cM region between markers D1S423 and D1S2682. Muckle-Wells syndrome was recently linked to chromosome 1q44, which suggests that the two disorders may be linked to the same locus.  相似文献   

6.
Nephronophthisis, an autosomal-recessive cystic kidney disease, is the most frequent monogenic cause for renal failure in childhood. Infantile and juvenile forms of nephronophthisis are known to originate from separate gene loci. We describe here a new disease form, adolescent nephronophthisis, that is clearly distinct by clinical and genetic findings. In a large, 340-member consanguineous Venezuelan kindred, clinical symptoms and renal pathology were evaluated. Onset of terminal renal failure was compared with that in a historical sample of juvenile nephronophthisis. Onset of terminal renal failure in adolescent nephronophthisis occurred significantly later (median age 19 years, quartile borders 16.0 and 25.0 years) than in juvenile nephronophthisis (median age 13.1 years, quartile borders 11.3 and 17.3 years; Wilcoxon test P=.0069). A total-genome scan of linkage analysis was conducted and evaluated by LOD score and total-genome haplotype analyses. A gene locus for adolescent nephronophthisis was localized to a region of homozygosity by descent, on chromosome 3q22, within a critical genetic interval of 2. 4 cM between flanking markers D3S1292 and D3S1238. The maximum LOD score for D3S1273 was 5.90 (maximum recombination fraction.035). This locus is different than that identified for juvenile nephronophthisis. These findings will have implications for diagnosis and genetic counseling in hereditary chronic renal failure and provide the basis for identification of the responsible gene.  相似文献   

7.
8.
Familial Mediterranean fever (FMF) is a recessively inherited disorder predisposing to renal amyloidosis and associated with mutations in MEFV, a gene encoding a protein of unknown function. Differences in clinical expression have been attributed to MEFV-allelic heterogeneity, with the M694V/M694V genotype associated with a high prevalence of renal amyloidosis. However, the variable risk for patients with identical MEFV mutations to develop this severe complication, prevented by lifelong administration of colchicine, strongly suggests a role for other genetic and/or environmental factors. To overcome the well-known difficulties in the identification of modifying genetic factors, we investigated a relatively homogeneous population sample consisting of 137 Armenian patients with FMF from 127 independent families living in Armenia. We selected the SAA1, SAA2, and APOE genes-encoding serum amyloid proteins and apolipoprotein E, respectively-as well as the patients' sex, as candidate modifiers for renal amyloidosis. A stepwise logistic-regression analysis showed that the SAA1alpha/alpha genotype was associated with a sevenfold increased risk for renal amyloidosis, compared with other SAA1 genotypes (odds ratio [OR] 6. 9; 95% confidence interval [CI] 2.5-19.0). This association, which was present whatever the MEFV genotype, was extremely marked in patients homozygous for M694V (11/11). The risk for male patients of developing renal amyloidosis was fourfold higher than that for female patients (OR=4.0; 95% CI=1.5-10.8). This association, particularly marked in patients who were not homozygous for M694V (34.0% vs. 11.6%), was independent of SAA1-allelic variations. Polymorphisms in the SAA2 or APOE gene did not appear to influence susceptibility to renal amyloidosis. Overall, these data, which provide new insights into the pathophysiology of FMF, demonstrate that susceptibility to renal amyloidosis in this Mendelian disorder is influenced by at least two MEFV-independent factors of genetic origin-SAA1 and sex-that act independently of each other.  相似文献   

9.
Congenital nephrotic syndrome of the Finnish type (CNF) is an autosomal recessive disease that is characterized by massive proteinuria and nephrotic syndrome at birth. CNF represents a unique, apparently specific dysfunction of the renal basement membranes, and the estimated incidence of CNF in the isolated population of Finland is 1 in 8,000 newborns. The basic defect is unknown, and no specific biochemical defect or chromosomal aberrations have been described. Here we report the assignment of the CNF locus to 19q12-q13.1 on the basis of linkage analyses in 17 Finnish families. Multipoint analyses and observed recombination events place the CNF locus between multiallelic markers D19S416 and D19S224, and the significant linkage disequilibrium observed suggests that the CNF gene lies in the immediate vicinity of the markers D19S224 and D19S220.  相似文献   

10.
A gene (NPH1) responsible for approximately 90% of the purely renal form of familial juvenile nephronophthisis, a progressive tubulo-interstitial kidney disorder, maps to human chromosome 2. We report the construction of a YAC-based contig spanning the critical NPH1 region and the flanking genetic markers. This physical map was integrated with a refined genetic map that restricted the NPH1 interval to about 2 cM; this interval corresponds in a maximum physical distance of 3.5 Mb. The entire contig covers 9 cM between the loci D2S135 and D2S121. The maximum physical distance between these two markers is approximately 11.3 Mb. Forty-five sequence-tagged sites, including six genes, have been located within this contig. PAX8, a member of the human paired box gene family, that is expressed in the developing kidney, was assigned outside the restricted NPH1 critical region and cannot therefore be regarded as a candidate gene. This set of overlapping clones represents a useful resource for further targeted development of genetic markers and for the characterization of candidate genes responsible for juvenile nephronophthisis.  相似文献   

11.
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci (PKD1, PKD2, and PKD3) that account for the disease. Mutations in the PKD2 gene, on the long arm of chromosome 4, are expected to be responsible for approximately 15% of cases of ADPKD. Although ADPKD is a systemic disease, it shows a focal expression, because <1% of nephrons become cystic. A feasible explanation for the focal nature of events in PKD1, proposed on the basis of the two-hit theory, suggests that cystogenesis results from the inactivation of the normal copy of the PKD1 gene by a second somatic mutation. The aim of this study is to demonstrate that somatic mutations are present in renal cysts from a PKD2 kidney. We have studied 30 renal cysts from a patient with PKD2 in which the germline mutation was shown to be a deletion that encompassed most of the disease gene. Loss-of-heterozygosity (LOH) studies showed loss of the wild-type allele in 10% of cysts. Screening of six exons of the gene by SSCP detected eight different somatic mutations, all of them expected to produce truncated proteins. Overall, >/=37% of the cysts studied presented somatic mutations. No LOH for the PKD1 gene or locus D3S1478 were observed in those cysts, which demonstrates that somatic alterations are specific. We have identified second-hit mutations in human PKD2 cysts, which suggests that this mechanism could be a crucial event in the development of cystogenesis in human ADPKD-type 2.  相似文献   

12.
Congenital hereditary endothelial dystrophy (CHED) is a corneal disorder that presents with diffuse bilateral corneal clouding. Vision may be severely impaired, and many patients require corneal transplantation. Both autosomal dominant (AD) and autosomal recessive (AR) forms of the disorder have been described. The gene responsible for AD CHED (HGMW-approved symbol CHED1) has been mapped to the pericentromeric region of chromosome 20. Investigating a large, consanguineous Irish pedigree with autosomal recessive CHED, we have previously excluded linkage to this AD CHED locus. We now describe a genome-wide search using homozygosity mapping and DNA pooling. Evidence of linkage to chromosome 20p was demonstrated with a maximum lod score of 9.30 at a recombination fraction of 0.0 using microsatellite marker D20S482. A region of homozygosity in all affected individuals was identified, narrowing the disease gene locus to an 8-cM region flanked by markers D20S113 and D20S882. This AR CHED (HGMW-approved symbol CHED2) disease gene locus is physically and genetically distinct from the AD CHED locus.  相似文献   

13.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

14.
Birt-Hogg-Dubé syndrome (BHD), an inherited autosomal genodermatosis characterized by benign tumors of the hair follicle, has been associated with renal neoplasia, lung cysts, and spontaneous pneumothorax. To identify the BHD locus, we recruited families with cutaneous lesions and associated phenotypic features of the BHD syndrome. We performed a genomewide scan in one large kindred with BHD and, by linkage analysis, localized the gene locus to the pericentromeric region of chromosome 17p, with a LOD score of 4.98 at D17S740 (recombination fraction 0). Two-point linkage analysis of eight additional families with BHD produced a maximum LOD score of 16.06 at D17S2196. Haplotype analysis identified critical recombinants and defined the minimal region of nonrecombination as being within a <4-cM distance between D17S1857 and D17S805. One additional family, which had histologically proved fibrofolliculomas, did not show evidence of linkage to chromosome 17p, suggesting genetic heterogeneity for BHD. The BHD locus lies within chromosomal band 17p11.2, a genomic region that, because of the presence of low-copy-number repeat elements, is unstable and that is associated with a number of diseases. Identification of the gene for BHD may reveal a new genetic locus responsible for renal neoplasia and for lung and hair-follicle developmental defects.  相似文献   

15.
Xiao S  Bu L  Zhu L  Zheng G  Yang M  Qian M  Hu L  Liu J  Zhao G  Kong X 《Genomics》2001,74(2):180-185
Gingival fibromatosis (GINGF) is an oral disorder characterized by enlargement of the gingiva. It occurs either as the sole phenotype or combined with other symptoms. Thus far, one GINGF locus has been mapped on chromosome 2, at 2p21, and a second possible locus has been mapped to 2p13. However, the genes responsible for this disorder have not been elucidated. We identified a four-generation Chinese GINGF family in which the disease manifests within 1 year after birth. After exclusion of the two known GINGF loci in this family, we performed a genome-wide search to map the chromosome location of the responsible gene. We identified a new locus, GINGF2, on chromosome 5q13-q22 with a maximum two-point lod score of 4.31 at D5S1721 (theta = 0.00). Haplotype analysis placed the critical region in the interval defined by D5S1491 and D5S1453. Within this region, calcium/calmodulin-dependent protein kinase IV (CAMK4) is a strong candidate.  相似文献   

16.
Arrhythmogenic right-ventricular dysplasia (ARVD), a cardiomyopathy inherited as an autosomal-dominant disease, is characterized by fibro-fatty infiltration of the right-ventricular myocardium. Four loci for ARVD have been mapped in the Italian population, and recently the first locus was mapped in inhabitants of North America. None of the genes have been identified. We have now identified another North American family with early onset of ARVD and high penetrance. All of the children with the disease haplotype had pathological or clinical evidence of the disease at age <10 years. The family spans five generations, having 10 living and 2 dead affected individuals, with ARVD segregating as an autosomal-dominant disorder. Genetic linkage analysis excluded known loci, and a novel locus was identified on chromosome 10p12-p14. A peak two-point LOD score of 3.92 was obtained with marker D10S1664, at a recombination fraction of 0. Additional genotyping and haplotype analysis identified a shared region of 10.6 cM between marker D10S547 and D10S1653. Thus, a novel gene responsible for ARVD resides on the short arm of chromosome 10. This disease is intriguing, since it initiates exclusively in the right ventricle and exhibits pathological features of apoptosis. Chromosomal localization of the ARVD gene is the first step in identification of the genetic defect and the unraveling of the molecular basis responsible for the pathogenesis of the disease.  相似文献   

17.
We have established rBAT (named as SLC3A1 in the Genome Data Base) as a gene responsible for cystinuria, a heritable disorder of amino acid transport. The cystinuria locus has been mapped by linkage between microsatellite markers D2S119 and D2S177. Fluorescene in situ hybridization (FISH) either with Alu-polymerasechain-reaction (PCR)-amplified sequences of a yeast artificial chromosome (YAC) containing the rBAT gene or with rBAT-specific PCR-amplified genomic fragments, and chromosome G-banding have cytogenetically mapped rBAT to 2p16.3. In order to correlate the physical and genetic information on cystinuria, we have performed FISH with combinations of Alu-PCR- amplified sequences from YACs containing rBAT or the D2S119 and D2S177 loci. In all cases, a fused signal is obtained that demonstrates their close physical location; this allows the assignment of rBAT, cystinuria and their linked markers, D2S119 and D2S177, to 2p16.  相似文献   

18.
The PKHD1 (polycystic kidney and hepatic disease 1) gene responsible for autosomal recessive polycystic kidney disease has been mapped to 6p21.1-p12 to an approximately 1-cM interval flanked by the markers D6S1714/D6S243 and D6S1024. We have developed a sequence-ready BAC/PAC-based contig map of this region as the next step for the positional cloning of PKHD1. This contig comprising 52 clones spanning approximately 1 Mb was established by content mapping of 44 BAC/PAC-end-derived STSs, 3 known genetic markers, 5 YAC-end-derived STSs, 3 random STSs, 1 previously mapped gene, and 1 EST. The average depth per marker is 6.3 clones, and the average STS density is 20 kb. The genomic clone overlaps were confirmed by restriction fragment fingerprint analysis. A high-resolution BAC/PAC-based contig map is essential to the ultimate goal of identifying the PKHD1 gene.  相似文献   

19.
Branchio-oto-renal (BOR) syndrome is characterized by ear malformations, cervical fistulas, hearing loss, and renal anomalies. It is an autosomal dominant disorder with variable clinical manifestations. The most common features of BOR syndrome are branchial, hearing, and renal anomalies. However, many affected subjects have been observed with branchial-cleft anomalies and hearing loss but without renal anomalies, a condition called "branchio-otic" (BO) syndrome. It is logical to question whether the BOR and BO syndromes are allelic or whether they represent distinct genetic entities. We identified a very large extended family whose members had branchial and hearing anomalies associated with commissural lip pits that segregated in an autosomal dominant fashion. Using a genomewide search strategy, we identified genetic linkage, with a maximum LOD score of 4.81 at recombination fraction 0, between the BO phenotype and polymorphic marker D1S2757 in the genetic region of chromosome 1q31. This is the first report of linkage for a second gene associated with BOR syndrome. The findings have important clinical implications and will provide insight into the genetic basis of BOR syndrome.  相似文献   

20.
Arabidopsis semi-dominant uni-1D shows both constitutive defense responses and diverse morphological defects. In particular, uni-1D homozygote (uni-1D) mutants exhibit severe phenotypes including not only highly up-regulated pathogenesis related-1(PR-1) gene expression, but also lethality in the early stage of true leaf formation after germination. The gene responsible for the mutant encodes a coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR)-type R protein that functions in the recognition of pathogen and the triggering of defense responses. However, the molecular basis of how uni-1D can induce these phenotypes was unknown. In this study, we isolated the regulatory particle triple-ATPase (RPT) subunits 2a and 2b, base components of the 19S regulatory particle in the 26S proteasome, as uni-1D-interacting proteins using yeast two-hybrid screening. Genetic studies showed that crossing with the rpt2a mutant reduces the level of uni-1D-induced PR-1 gene expression and suppresses the lethality of uni-1D, by leading to restoration of lost expression of the WUSCHEL gene, which functions to maintain meristem activity, in the shoot apical mersitem of uni-1D. These results suggest that RPT2a is a major interacting partner of uni-1D/UNI, and that the interaction between uni-1D and RPT2a is responsible for activating both morphology and defense signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号