首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new graphical method was developed to determine the kinetic parameters in the Michaelis-Menten-type equation. This method was then applied to studying the kinetics of lactose hydrolysis by Aspergillus niger beta-galactosidase. In this study, the reaction temperature ranged between 8 and 60 degrees C, and the initial lactose concentration ranged between 2.5 and 20%. A kinetic model similar to the conventional Michaelis-Menten equation with competitive product inhibition by galactose was tested using this graphical method as well as a nonlinear computer regression method. The experimental data and the model fit together fairly well at 50 degrees C. However, a relative large disparity was found for reactions at 30 degrees C. A three-parameter integrated model derived from the reversible reaction mechanism simulates the experimental data very well at all temperatures studied. However, this reversible reaction model does not follow the Arrhenius temperature dependence. Nevertheless, reaction rate constants for the proposed model involving the enzyme-galactose complex (in addition to the Michaelis complex) as an intermediate in lactose hydrolysis follow the Arrhenius temperature dependence fairly well, suggesting that this model can be best used for describing the enzymatic lactose hydrolysis. The lack of fit between the model predictions and data may be largely attributed to the effects of galactose mutarotation and oligosaccharide formation during lactose hydrolysis.  相似文献   

2.
During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization.  相似文献   

3.
Enzymatic lactose hydrolysis by beta-galactosidase (lactase) was investigated with respect to the formation of oligosaccharides. An analysis of the formation of oligosaccharides and their control is important in the development of technical applications for enzymatic lactose hydrolysis. The available literature data on transfer reactions of lactase were reviewed, compared, and presented in a concise tabular form. Mechanisms and possible ways of modelling enzymatic lactose hydrolysis, including formation of oligosaccharides, are presented.  相似文献   

4.
Analytical expressions are derived for the optimal design (based on minimum overall reactors volume) of a series of N CSTR's performing enzymatic lactose hydrolysis. It is assumed that lactose hydrolysis obeys Michaelis-Menten kinetics with competitive product (galactose) inhibition and no enzyme deactivation occurs. The optimum design of a cascade of ideally mixed reactors are compared with equal size reactors and with plug flow reactor required for a given overall degree of lactose conversion. The effect of operating parameters such as temperature, lactose initial (feed) concentration and conversion, enzyme and product initial concentration on the optimal overall holding time are also investigated. Optimization results for a series of N CSTR's up to five are obtained and compared with plug flow reactor.  相似文献   

5.
Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type beta-glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type beta-mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. The oligosaccharide synthesis was carried out in aqueous solution at 95 degrees C at different lactose concentrations and pH values. The results showed enhanced synthetic properties of the CelB mutant enzymes. An exchange of one phenylalanine to tyrosine (F426Y) increased the oligosaccharide yield (45%) compared with the wild-type CelB (40%). Incorporation of a positively charged group in the active site (M424K) increased the pH optimum of transglycosylation reaction of CelB. The double mutant, M424K/F426Y, showed much better transglycosylation properties at low (10-20%) lactose concentrations compared to the wild-type. At a lactose concentration of 10%, the oligosaccharide yield for the mutant was 40% compared to 18% for the wild-type. At optimal reaction conditions, a higher ratio of tetrasaccharides to trisaccharides was obtained with the double mutant (0.42, 10% lactose) compared to the wild-type (0.19, 70% lactose). At a lactose concentration as low as 10%, only trisaccharides were synthesized by CelB wild-type. The beta-mannosidase BmnA from P. furiosus showed both beta-glucosidase and beta-galactosidase activity and in the transglycosylation of lactose the maximal oligosaccharide yield of BmnA was 44%. The oligosaccharide yields obtained in this study are high compared to those reported with other transglycosylating beta-glycosidases in oligosaccharide synthesis from lactose.  相似文献   

6.
Alcoholysis and reverse hydrolysis reactions were performed enzymatically in one-phase water-saturated 1-heptanol systems. Lactose or glucose was used as substrate to produce heptyl-beta-galactoside and/or heptyl-beta-glucoside, respectively. When alcoholysis of lactose was performed at 37 degrees C with beta-galactosidase from Escherichia coli, the initial rate was 14 nmol/mL min, and the limiting factors were the poor solubility of the substrate in 1-heptanol and low thermal stability of the enzyme. When a hyperthermophilic beta-glycosidase was used at 90 degrees C, the rate was 3.14-fold higher; in this case a higher concentration of soluble lactose in the water-saturated heptanol was available to the enzyme due to the higher temperature. The hyperthermophilic beta-glycosidase was also able to use glucose and galactose as substrates to achieve the reverse hydrolysis reaction. As a consequence, when lactose was used as substrate, heptyl-beta-galactoside was formed by alcoholysis, while the released glucose moiety was used in a secondary reverse hydrolysis reaction to produce heptyl-beta-glucoside. Both reactions followed Michaelis-Menten kinetics behavior. Neither lactose nor heptyl glycosides were hydrolyzed by this enzyme in water-saturated heptanol. However, the conversion was limited by a strong product inhibition and the formation of oligosaccharides, especially at high substrate concentrations, reducing the final glycoside yield.  相似文献   

7.
Ye Z  Berson RE 《Bioresource technology》2011,102(24):11194-11199
Enzymatic hydrolysis involves complex interaction between enzyme, substrate, and the reaction environment, and the complete mechanism is still unknown. Further, glucose release slows significantly as the reaction proceeds. A model based on Langmuir binding kinetics that incorporates inactivation of adsorbed cellulase was developed that predicts product formation within 10% of experimental results for two substrates. A key premise of the model, with experimental validation, suggests that V(max) decreases as a function of time due to loss of total available enzyme as adsorbed cellulases become inactivated. Rate constants for product formation and enzyme inactivation were comparable to values reported elsewhere. A value of k(2)/K(m) that is several orders of magnitude lower than the rate constant for the diffusion-controlled encounter of enzyme and substrate, along with similar parameter values between substrates, implies a common but undefined rate-limiting step associated with loss of enzyme activity likely exists in the pathway of cellulose hydrolysis.  相似文献   

8.
The effects of temperature on the hydrolysis of lactose by immobilized beta-galactosidase were studied in a continuous flow capillary bed reactor. Temperature affects the rates of enzymatic reactions in two ways. Higher temperatures increase the rate of the hydrolysis reaction, but also increase the rate of thermal deactivation of the enzyme. The effect of temperature on the kinetic parameters was studied by performing lactose hydrolysis experiments at 15, 20, 25, 30, and 40 degrees C. The kinetic parameters were observed to follow an Arrhenius-type temperature dependence. Galactose mutarotation has a significant impact on the overall rate of lactose hydrolysis. The temperature dependence of the mutarotation of galactose was effectively modelled by first-order reversible kinetics. The thermal deactivation characteristics of the immobilized enzyme reactor were investigated by performing lactose hydrolysis experiments at 52, 56, 60, and 64 degrees C. The thermal deactivation was modelled effectively as a first order decay process. Based on the estimated thermal deactivation rate constants, at an operating temperature of 40 degrees C, 10% of the enzyme activity would be lost in one year.  相似文献   

9.
The combination of low severity steam explosion and superfine grinding has been studied with respect to side products generation and enzymatic hydrolysis efficiency. Chemical compositions, fiber characteristics and composed cells contents in the superfine ground product and the ground residue particles produced by superfine grinding were also studied. At the determined parameters using FJM-200 fluidized bed opposed jet mill, 78% superfine ground steam-exploded rice straw (SERS) products with the mean fiber length of 60 μm were obtained, the particles yield was 179% higher than that from the native rice straw (RS). Enzymatic hydrolysis, chemical composition, fiber characteristics and composed cells proportion of the superfine ground SERS product and the ground residue all show great differences. The difference in enzymatic hydrolysis and structural properties indicates that superfine grinding is a good way to fractionate SERS into easily bio-converted part and difficultly hydrolysed part.  相似文献   

10.
Enzymatic hydrolysis of e-ATP by F-actin with and without application of sonic vibration at various pHs was investigated and compared with that of ATP. These was no significant difference on enzymatic activity between F-actin-bound e-ADP and F-actin-bound ADP. The hydrolysis rate of e-ATP under sonic vibration decreases monotonically with decreasing pH, similar to that of ATP. The magnitude of e-ATP hydrolysis rate was, however, about one third of that of ATP hydrolysis rate in the pH range between 6.3 and 8.5. Enzymatic hydrolysis of e-ATP without sonic vibration at room or higher temperatures decreases monotonically with increasing pH and becomes almost negligible at pH 8.5. The pH profile and the magnitude of enzymatic hydrolysis without sonic vibration were similar with ATP. Since the fluorescence intensity of e-ATP at 410 nm is enhanced by the binding with G-actin, the exchange binding affinity of e-ATP to G-actin which can be measured fluorophotometrically was about one third of that of ATP.  相似文献   

11.
The hydrolysis of lactose using immobilized beta-galactosidase (from Aspergillus niger) on phenol-formaldehyde resin was studied at temperatures between 8 and 60 degrees C and initial lactose concentrations ranging from 2.5 to 20.0%. A model involving enzyme-galactose complex similar to Michaelis-Menten kinetics with competitive product (galactose) inhibition is suitable to describe the lactose hydrolysis reaction. A small degree of lack of fit between the model and the data was found to be due to the formation of oligosaccharides. Thermal deactivation of lactase follows first-order reaction mechanism. The effect of temperature on the reaction and the deactivation rate constants follows the Arrhenius relationship. The Oligosaccharide formation was not significantly affected by the temperature when the initial lactose concentration was 5%. A design equation for the plug-flow immobilized lactase reactor was developed from the reaction and the deactivation kinetics and was used to find the optimal operating temperature. The optimal temperature was found to be dependent on the operating time but not on the lactose concentration or the conversion. The optimal operating temperature is 60 degrees C when operating time is short but is close to 35 degrees C for a long operating time. A preliminary economic analysis indicates that the optimal operating temperature is 43, 38.5, and 33 degrees C when the operating time is 300 days, 1000 days, and infinity, respectively.  相似文献   

12.
A mathematic model for describing the Michaelis-Menten-type reaction kinetics with product competitive inhibition and side-reaction is proposed. A multiresponse nonlinear simulation program was employed to determine the coefficients of a four-parameter rate expression. The rate expression was compared with the conventional Michaelis-Menten reaction rate models with and without product inhibition. Experimental data were obtained using beta-galactosidase of Kluyveromyces lactis immobilized on cotton fabric in a batch system at a temperature of 37 degrees C and at various initial concentrations of dissolved lactose ranging from 3-12.5% (w/v). The reaction is followed by concentration changes with time in the tank. Samples were obtained after the outlet stream of the packed bed reactor is mixed in a well-stirred tank. High-performance liquid chromatography (HPLC) was applied to monitor the concentrations of all the sugars (reactants as well as products). The four-parameter rate model is featured with a term to describe the formation of trisaccharides, a side-reaction of the enzymatic hydrolysis. The proposed model simulates the process of lactose hydrolysis and the formation of glucose and galactose, giving better accuracy compared with the previous models.  相似文献   

13.
Cho YJ  Shin HJ  Bucke C 《Biotechnology letters》2003,25(24):2107-2111
A beta-galactosidase, catalyzing lactose hydrolysis and galactooligosaccharide (GalOS) synthesis from lactose, was extracted from the yeast, Bullera singularis KCTC 7534. The crude enzyme had a high transgalactosylation activity resulting in the oligosaccharide conversion of over 34% using pure lactose and cheese whey permeate as substrates. The enzyme was purified by two chromatographic steps giving 96-fold purification with a yield of 16%. The molecular weight of the purified enzyme (specific activity of 56 U mg(-1)) was approx. 53 000 Da. The hydrolytic activity was the highest at pH 5 and 50 degrees C, and was stable to 45 degrees C for 2 h. Enzyme activity was inhibited by 10 mM Ag3+ and 10 mM SDS. The Km for lactose hydrolysis was 0.58 M and the maximum reaction velocity (V(max)) was 4 mM min(-1). GalOS, including tri- and tetra-saccharides were produced with a conversion yield of 50%, corresponding to 90 g GalOS l(-1) from 180 g lactose l(-1) by the purified enzyme.  相似文献   

14.
The hydrolysis of amylopectin potato starch with Bacillus licheniformis alpha-amylase (Maxamyl) was studied under industrially relevant conditions (i.e. high dry-weight concentrations). The following ranges of process conditions were chosen and investigated by means of an experimental design: pH [5.6-7.6]; calcium addition [0-120 microg/g]; temperature [63-97 degrees C]; dry-weight concentration [3-37% [w/w]]; enzyme dosage [27.6-372.4 microL/kg] and stirring [0-200 rpm]. The rate of hydrolysis was followed as a function of the theoretical dextrose equivalent. The highest rate (at a dextrose equivalent of 10) was observed at high temperature (90 degrees C) and low pH (6). At a higher pH (7.2), the maximum temperature of hydrolysis shifted to a lower value. Also, high levels of calcium resulted in a decrease of the maximum temperature of hydrolysis. The pH, temperature, and the amount of enzyme added showed interactive effects on the observed rate of hydrolysis. No product or substrate inhibition was observed. Stirring did not effect the rate of hydrolysis. The oligosaccharide composition after hydrolysis (at a certain dextrose equivalent) did depend on the reaction temperature. The level of maltopentaose [15-24% [w/w]], a major product of starch hydrolysis by B. licheniformis alpha-amylase, was influenced mostly by temperature.  相似文献   

15.
Kinetic experiments have been conducted with acetone-dried cells of Kluyveromyces fragilis to study product inhibition of the enzymatic hydrolysis of lactose. Both hydrolytic products, d-glucose and d-galactose, showed efficient inhibition effect on enzyme activity. The fact that d-glucose and d-galactose are mutually exclusive for the inhibition was verified by Dixon plots. The kinetic constants were also estimated using the experimental data. The rate equation was derived based on a multiple inhibition model of competitive inhibition of d-galactose and non-competitive inhibition of d-glucose. The good agreement between experiment and prediction indicated the validity of the established model.  相似文献   

16.
The endogenous sialidase (N-acetylneuraminidase) activity of membranes prepared from goldfish retina and optic tectum displays characteristics similar to those reported for neural plasma membrane sialidases of other organisms. Endogenous membrane sialidase activity was found to be optimal at ph 4.0, and maximal release was obtained at 37-50 degrees C, above which temperature thermal instability of the preparations was observed. Optic nerve crush, which results in regeneration of retinal ganglion cell axons, did not result in significant changes in measured endogenous membrane sialidase activity in either the retina or the optic tectum. Enzymatic hydrolysis of membrane sialoglycolipid (ganglioside) accounted for about 70% of the total sialic acid released. Ganglioside GM1 accumulated as the major lipid product in both retina and tectum, indicating that the inner sialosylgalactosyl linkage in the ganglio oligosaccharide series was resistant to hydrolysis by the endogenous enzyme.  相似文献   

17.
Summary Enzymatic hydrolysis of racemic 3-acetylthio-2-methylpropionic methyl ester catalyzed by bovine pancreatic protease and Mucor javanicus lipase showed opposite enantioselecivity. A tandem hydrolysis of the ester catalyzed by these two enzymes gives enantiomerically enriched (S)-3-acetylthio-2-methylpropionic acid, a building block of captopril.  相似文献   

18.
Enzymatic hydrolysis of cellulose for sugar production offers advantages of higher conversion, minimal by-product formation, low energy requirements, and mild operating conditions over other chemical conversions. The development of a kinetic model, based on observable, macroscopic properties of the overall system, is helpful in design and economic evaluation of processes for sugar conversion and ethanol production. A kinetic model is presented, incorporating enzyme adsorption, product inhibition, and considers a multiple enzyme and substrate system. This model was capable of simulating saccharification of a lignocellulosic material, rice straw, at high substrate (up to 333 g/L) and enzyme concentrations (up to 9.2 FPU/mL) that are common to proposed process designs.  相似文献   

19.
Beta-Galactosidase from Saccharomyces lactis was found to be able to catalyze both the anomerization of alpha-lactose and the hydrolysis of beta-lactose; the rate of hydrolysis appeared to be four times higher with a 1:1 mixture of alpha and beta lactose than with a freshly prepared solution of alpha-lactose. The enzyme was also found to be unable to hydrolyze alpha-lactose. Thus, it appears that beta-galactosidase from S. lactis has its hydrolytic activity on lactose adapted only to the naturally more abundant beta-lactose.  相似文献   

20.
Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号