首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular proteolysis was measured in primary cultures of newborn rat skeletal (gastrocnemius) and cardiac muscle cells by release to the medium of trichloroacetic acid-soluble label from cells grown in the presence of 14C-labeled phenylalanine. Exposure of the cultured cells to 10?7M dexamethasone for 5 days starting at day 0 of culture resulted in an enhancement of proteolysis in skeletal muscle but not in cardiac muscle cells. Dexamethasone did not affect cell viability measured by release of label from cells preloaded with Na2 51CrO4, release of creatine phosphokinase, and release of lactic dehydrogenase into the culture medium. Incorporation of 3H-thymidine into the cells increased during the first 3 to 4 days of culture and subsequently decreased, indicating that cell proliferation ceases at that time. When the exposure to dexamethasone was started on day 4 of culture, i.e., at a postmitotic stage, and continued for 4 days, proteolysis was again found to increase in skeletal but not cardiac cells, thereby suggesting that the response to the hormone is independent of the proliferative state of the culture. Ammonium chloride at a concentration of 10 mM produced a 50% reduction of the basal proteolysis in cultures of skeletal muscle cells and did not affect proteolysis in cardiac muscle cells. Exposure to ammonium chloride did not prevent the dexamethasone-induced increase of proteolysis in skeletal muscle cells. Serum-deprivation induced enhanced proteolysis which was not affected by NH4Cl in both cell types. It is concluded that the differential responses of the two cultures to dexamethasone reflects the sparing of heart proteins and concomitant wasting of skeletal muscle proteins by glucocorticoid hormones in vivo, and that the enhancement of proteolysis by the glucocorticoid hormone or by serum-deprivation is not sensitive to the lysosomotropic agent NH4Cl. Thus, while a lysosomal-autophagic enzyme system is responsible for almost half of the basal proteolysis, the accelerated proteolysis occurs via ammonium chloride-insensitive enzymes.  相似文献   

2.
Summary A modified histochemical technique is described for the improved detection of myosin Ca2+-ATPase activity in single muscle cells in culture. The method was used to demonstrate the increase in myosin Ca2+-ATPase activity in differentiating chick skeletal muscle cells. Functional muscle cells were also positively identified in the heterogeneous cell population of primary hamster heart cell cultures. An age-dependent increase in the number of cells with high levels of myosin ATPase activity in mitotically arrested heart cell cultures was shown. Maturation of individual muscle cells could thus be evaluated.  相似文献   

3.
The expression of RNA sequences coding for myofibrillar proteins has been followed during terminal differentiation in a mouse skeletal muscle cell line. Cloned complementary DNA probes hybridizing with the actins, skeletal muscle α-actin, myosin heavy chain and the myosin alkali light chains were employed in Northern blotting experiments with total cellular poly (A)-containing RNA extracted from the cultures at different times after plating. At the same times, parallel cultures were pulse-labelled with [35S]methionine and the pattern of newly synthesized proteins was analysed by two-dimensional gel electrophoresis. Synthesis of skeletal muscle α-actin and of the myosin alkali light chains (LClemb, LC1, LC3) was not detectable in dividing myoblast cultures. From the onset of cell fusion, the synthesis of myosin heavy chain, LClemb and α-actin increases with similar kinetics. Synthesis of LC3 (and trace amounts of LC1F) is detectable and subsequently increases at later stages of myotube formation. The corresponding messenger RNAs coding for myosin heavy chain and skeletal muscle α-actin are first detectable immediately before the initiation of myofibrillar protein synthesis. mRNAs coding for the non-muscle actins are accumulated in myoblasts and diminish after cell fusion. Comparisons between muscle mRNAs depend on the relative sensitivities of the different probes, reflecting mainly their homology with the isoform of the actin or myosin multigene family expressed. Quantitative analysis of Northern blots gives an estimated increase in skeletal muscle α-actin mRNA, with an homologous probe, of at least 130-fold with a minimum level of detection of 40 to 80 molecules per cell. Accumulation of this species and of the myosin heavy chain mRNA follows similar kinetics. mRNA coding for LC3, the principal myosin light chain detected with the probe, appears to accumulate to a lesser extent initially, paralleling synthesis of the corresponding protein. These results using cloned probes demonstrate a close temporal correlation between muscle mRNA accumulation and protein synthesis during terminal myogenesis in this muscle line.  相似文献   

4.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

5.
6.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] phosphorylates the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, within 30 sec in primary cultured chick skeletal muscle cells. MAPK of HeLa cell lines, which had been stably transfected with a cDNA library derived from mRNA of chick skeletal muscle cells, was also rapidly phosphorylated by 1,25-(OH)2D3. These cell lines have the potential to be a good tool for further investigation of rapid non-genomic mechanism activated by 1,25-(OH)2D3.  相似文献   

8.
Low concentrations of Mn2+ supported the basal adenylate cyclase activity in crude and purified sarcolemmal membranes from cardiac muscle more effectively than did relatively high concentrations of Mg2+; at saturating concentrations the cyclase activities obtained with Mg2+ or Mn2+ were similar. In contrast, Mg2+ supported the basal cyclase activities of crude membrane fractions and purified sarcolemmal membranes from skeletal muscle far more effectively than did Mn2+; at saturating concentrations of either metal ion the Mg2+-supported cyclase activities were 5- to 10-fold greater than Mn2+-supported activities. Further, compared to Mg2+, Mn2+ supported the cyclase activities very poorly in all the primary subcellular fractions of skeletal muscle, whereas this cation was at least as effective as Mg2+ in all fractions of cardiac muscle. The apparent affinities of the cyclase for Mn2+ in heart as well as skeletal muscle appeared to be greater compared to those for Mg2+. The skeletal muscle cyclase displayed greater apparent affinity for MnATP2? (app. Km 0.10 mm) compared to MgATP2? (app. Km 0.32 mm) whereas the heart enzyme displayed greater apparent affinity for MgATP2? (app. Km 0.07 mm) compared to MnATP2? (app. Km 0.19 mm). Following preactivation with guanyl-5′-yl imidodiphosphate and isoproterenol, Mn2+ (0.15 to 2 mm) supported the cyclase activity of skeletal muscle even more effectively than did optimally effective concentrations of Mg2+. With the heart enzyme the relatively greater potency of Mn2+ persisted following preactivation. Significant enhancement in the Mn2+-sensitivity of skeletal muscle cyclase was also observed when assayed in the presence of GTP and isoproterenol or in the presence of NaF. Preactivation of both heart and skeletal muscle cyclases caused selective enhancement in the enzyme's apparent affinity for free Me2+ (Mg2+ or Mn2+) without influencing the apparent Km for MeATP2? (MgATP2? or MnATP2?). Evidences were obtained to show that the poor effectiveness of Mn2+ in supporting the basal activity of skeletal muscle cyclase is not related to (a) potentiation by Mn2+ of adenosine-mediated inhibition of the cyclase, (b) Mn2+-induced lability of the cyclase, (c) indirect effects of Mn2+ on ATP-regenerating system, or (d) the presence of different cation-specific molecular forms of the cyclase. It is also shown that the onset of enhanced Mn2+ sensitivity of the skeletal muscle enzyme following preactivation is not accompanied by a general loss of cation specificity of the cyclase. These results suggest that cations support the catalytic activity of adenylate cyclase by interacting with an enzymeregulatory free metal binding site and that the differential cation sensitivity of nonactivated (basal) cyclases from heart and skeletal muscle is likely due to differences in the properties of such an allosteric metal site. Furthermore, the metal site appears to undergo a conformational change following interaction of the cyclase system with the guanyl nucleotide and isoproterenol since the cation sensitivity of the cyclase and the relative potency of cations depend on the conformational status of the enzyme.  相似文献   

9.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

10.
The influence of Earth magnetic field shielded down to 0.3 μT and static magnetic field (60–160 μT) on the proliferation and differentiation of satellite muscle cells in primary culture has been investigated. A stimulatory effect of static magnetic fields on the rate of the formation of massive multinucleate myotubes and an increase in the intracellular calcium concentration ([Ca2+] i ) have been detected for magnetic fields of the microtesla range. On the other hand, it was shown that the reduction of earth magnetic fields to 0.3 μT leads to inhibition of proliferation and differentiation of skeletal muscle cells in primary culture. Since the formation of contractile myotubes during in vitro experiments is similar to the regeneration of skeletal muscle fibers under muscle damage in vivo, it may be concluded that weak magnetic fields have a strong effect on intracellular processes by influencing all phases of muscle fiber formation. It is necessary to take this fact into consideration when forecasting probable complications of skeletal muscle regeneration during long-term exposure of man to low-intensity magnetic fields and also for the potential use of low static magnetic fields as a tool to recover the affected myogenesis.  相似文献   

11.
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca2+ mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca2+ into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca2+ release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca2+]i trough L-type Ca2+ channels activation. In both cell types, a relatively slower Ca2+ release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca2+ released from IP3R of skeletal muscle also promotes mitochondrial Ca2+ uptake. We review here these actions of insulin on intracellular Ca2+ channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca2+ release from the SER.  相似文献   

12.
Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.  相似文献   

13.
Previous studies have demonstrated that interleukin-15 (IL-15) has important anabolic effects on muscle protein metabolism. In the present investigation we have analysed the effects of IL-15 on glucose metabolism in skeletal muscle. Administration of a single dose of the cytokine (100 μg/kg body weight) resulted in a 32% increase on glucose uptake (as measured by the uptake of 2-deoxyglucose) in skeletal muscle. The effects observed on glucose uptake were direct since in vitro incubations of rat EDL muscles in the presence of the cytokine resulted in a 30% increase in glucose uptake. Similarly, IL-15 increased glucose uptake in C2C12 cell cultures, this being related with an increase in both glucose oxidation to CO2 and the incorporation into muscle lipid. The effects of the cytokine were associated with an increase in GLUT-4 mRNA, suggesting a higher effect in insulin sensitivity. In conclusion, the data presented here indicate that IL-15 facilitates glucose metabolism in skeletal muscle and, therefore, a possible role of the cytokine as an antidiabetogenic drug merits future investigations.  相似文献   

14.
Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.  相似文献   

15.
16.
The ubiquitin-proteasome system is thought to play a major role in normal muscle protein turnover and to contribute to diabetes-induced protein wasting in skeletal muscle. However, its importance in cardiac muscle is not clear. We measured heart muscle mRNA for ubiquitin and for the C2 and C8 proteasomal subunits, the amount of free ubiquitin and the proteasome chymotrypsin-like proteolytic activity in control and diabetic rats. Results were compared to those in skeletal muscle (rectus). Heart ubiquitin, C2 and C8 subunit mRNA and proteolytic activity were significantly greater than in skeletal muscle (P 相似文献   

17.
The combined loss of muscle strength and constant fatigue are disabling symptoms for cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and premature fatigue along with an increase in reactive oxygen species (ROS). As mitochondria represent a primary source of oxidant generation in muscle, we hypothesized that doxorubicin could negatively affect mitochondria by inhibiting respiratory capacity, leading to an increase in H2O2-emitting potential. Here we demonstrate a biphasic response of skeletal muscle mitochondria to a single doxorubicin injection (20 mg/kg). Initially at 2 h doxorubicin inhibits both complex I- and II-supported respiration and increases H2O2 emission, both of which are partially restored after 24 h. The relationship between oxygen consumption and membrane potential (ΔΨ) is shifted to the right at 24 h, indicating elevated reducing pressure within the electron transport system (ETS). Respiratory capacity is further decreased at a later time point (72 h) along with H2O2-emitting potential and an increased sensitivity to mitochondrial permeability transition pore (mPTP) opening. These novel findings suggest a role for skeletal muscle mitochondria as a potential underlying cause of doxorubicin-induced muscle dysfunction.  相似文献   

18.
The blood O2-carrying capacity is maintained by the O2-regulated production of erythropoietin (Epo), which stimulates the proliferation and survival of red blood cell progenitors. Epo has been thought to act exclusively on erythroid progenitor cells. However, recent studies have identified the erythropoietin receptor (EpoR) in other cells, such as neurons, astrocytes, microglia, heart, cancer cell lines, and skeletal muscle provides evidence for a potential role of Epo in other tissues. In this study we aimed to determine the effect of recombinant human erythropoietin (rHuEpo) on skeletal muscle adaptations such as mitochondrial biogenesis, myogenesis, and angiogenesis in different muscle fibre types. Fourteen male Wistar rats were randomly divided into two experimental groups, and saline or rHuEpo (300?IU) was administered subcutaneously three times a week for 3?weeks. We evaluated the protein expression of intermediates involved in the mitochondrial biogenesis cascade, the myogenic cascade, and in angiogenesis in the oxidative soleus muscle and in the glycolytic gastrocnemius muscle. Contrary to our expectations, rHuEpo significantly hampered the mitochondrial biogenesis pathway in gastrocnemius muscle (PGC-1??, mTFA and cytochrome c). We did not find any effect of the treatment on cellular signals of myogenesis (MyoD and Myf5) or angiogenesis (VEGF) in either soleus or gastrocnemius muscles. Finally, we found no significant effect on the maximal aerobic velocity at the end of the experiment in the rHuEpo-treated animals. Our findings suggest that 3?weeks of rHuEpo treatment, which generates an increase of oxygen carrying capacity, can affect mitochondrial biogenesis in a muscle fibre-specific dependent manner.  相似文献   

19.
Loss of skeletal muscle mass is one of the most widespread and deleterious processes in aging humans. However, the mechanistic metabolic principles remain poorly understood. In the framework of a multi‐organ investigation of age‐associated changes of ceramide species, a unique and distinctive change pattern of C16:0 and C18:0 ceramide species was detected in aged skeletal muscle. Consistently, the expression of CerS1 and CerS5 mRNA, encoding the ceramide synthases (CerS) with substrate preference for C16:0 and C18:0 acyl chains, respectively, was down‐regulated in skeletal muscle of aged mice. Similarly, an age‐dependent decline of both CerS1 and CerS5 mRNA expression was observed in skeletal muscle biopsies of humans. Moreover, CerS1 and CerS5 mRNA expression was also reduced in muscle biopsies from patients in advanced stage of chronic heart failure (CHF) suffering from muscle wasting and frailty. The possible impact of CerS1 and CerS5 on muscle function was addressed by reversed genetic analysis using CerS1Δ/Δ and CerS5Δ/Δ knockout mice. Skeletal muscle from mice deficient of either CerS1 or CerS5 showed reduced caliber sizes of both slow (type 1) and fast (type 2) muscle fibers, fiber grouping, and fiber switch to type 1 fibers. Moreover, CerS1‐ and CerS5‐deficient mice exhibited reduced twitch and tetanus forces of musculus extensor digitorum longus. The findings of this study link CerS1 and CerS5 to histopathological changes and functional impairment of skeletal muscle in mice that might also play a functional role for the aging skeletal muscle and for age‐related muscle wasting disorders in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号