首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The osteology of the appendicular skeleton and its postnatal development are described in Bachia bicolor, a serpentiform lizard with reduced limbs. The pectoral girdle is well developed and the forelimb consists of a humerus, ulna, radius, five carpal elements (ulnare, radiale, distal carpals 4–3, centrale), four metacarpals (II, III, IV, V) and phalanges (phalangeal formula X‐2‐2‐2‐2). In the hindlimb, the femur is small and slender, and articulates distally with a series of ossified amorphous and extremely reduced elements that correspond to a fibula, tibia and proximal and distal tarsals 4 and 3. The pelvic girdle consists of ischium, pubis and ilium, but its two halves are widely separated; the ilium is the least reduced element. We describe the ossification and development during postnatal skeletal ontogeny, especially of epiphyseal secondary centres, ossifications of carpal elements, apophyseal ossifications and sesamoids. Compared to other squamates, B. bicolor shows an overall reduction in limb size, an absence of skeletal elements, a fusion of carpal elements, an early differentiation of apophyseal centres, and a low number of sesamoids and apophyseal centres. These observations suggest that the reductions are produced by heterochronic changes during postnatal development and probably during embryonic development; therefore the appendicular skeleton exhibits a pattern of paedomorphic features.  相似文献   

2.
Karyotypes of the Australian frogs Hyla caerulea (White) and Hyla phyllochroa Günther were prepared and analysed from colchicine-treated, primary cultures of adult heart, lung and kidney. The diploid chromosome number for both species is 26, which resembles that of most known karyotypes of Papuan hylids but differs from that of the genus Hyla in other regions. A statistical comparison, involving data from arm ratios, centromere indices and relative lengths of metaphase chromosomes of H. caerulea incubated at 31 and 37° C respectively, showed that the differences were non-significant at the 5% level. Similar treatment of data from cells of Hyla caerulea and Hyla phyllochroa incubated at 31°C failed to show a significant species difference. Absolute lengths of haploid chromosome complements of the two species at the same temperature were found to differ significantly. No evidence of sexual heteromorphism was found. The occurrence of a terminally situated, heterochromatic zone associated with the longer arm of the 11th pair of chromosomes is described and compared with the known condition in other hylids.  相似文献   

3.
We review the systematics of the Hypsiboas calcaratus species complex, a group of widely distributed Amazonian hylid frogs. A comprehensive analysis of genetic, morphological, and bioacoustic datasets uncovered the existence of eleven candidate species, six of which are confirmed. Two of them correspond to Hypsiboas fasciatus and Hypsiboas calcaratus and the remaining four are new species that we describe here. Hypsiboas fasciatus sensu stricto has a geographic range restricted to the eastern Andean foothills of southern Ecuador while Hypsiboas calcaratus sensu stricto has a wide distribution in the Amazon basin. Hypsiboas almendarizae sp. n. occurs at elevations between 500 and 1950 m in central and northern Ecuador; the other new species (H. maculateralis sp. n., H. alfaroi sp. n., and H. tetete sp. n.) occur at elevations below 500 m in Amazonian Ecuador and Peru. The new species differ from H. calcaratus and H. fasciatus in morphology, advertisement calls, and mitochondrial and nuclear DNA sequences. Five candidate species from the Guianan region, Peru, and Bolivia are left as unconfirmed. Examination of the type material of Hyla steinbachi, from Bolivia, shows that it is not conspecific with H. fasciatus and thus is removed from its synonymy.  相似文献   

4.
Hyla chrysoscelis, Cope's Gray Treefrog, is a generalized treefrog found throughout much of east‐central North America. Although it is a model for many behavioural and ecological studies, little is known of its skeletal morphology or development. Herein, we describe the postembryonic skeletal development and adult osteology of H. chrysoscelis. The adult skull is well ossified with slight dermal ornamentation, the postcranial and tadpole skeletons are fairly non‐distinct with no obvious novel morphologies, and the Gosner stage by which bony elements first appear varies. We compare the rank order sequence of ossification to that of its sibling species Hyla versicolor and use examples from this study to demonstrate current complications with conducting ossification sequence meta‐analyses.  相似文献   

5.
6.
7.
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.  相似文献   

8.
9.
10.
中国林蛙蝌蚪的口器发育   总被引:1,自引:0,他引:1  
采用扫描电镜和组织学技术观察了中国林蛙(Rana chensinensis)蝌蚪发育过程中口器外部形态结构的变化,以及中国林蛙蝌蚪口器内部结构特征.结果表明,在口器发育的初期,角质颌最先出现,接着出现唇乳突以及唇齿;在变态高峰期(G4l~G42),口器结构如唇齿、角质颌和唇乳突则是按以下顺序消失的,即唇齿最先消失,其次...  相似文献   

11.

Background

Amycolatopsis orientalis is the type species of the genus and its industrial strain HCCB10007, derived from ATCC 43491, has been used for large-scale production of the vital antibiotic vancomycin. However, to date, neither the complete genomic sequence of this species nor a systemic characterization of the vancomycin biosynthesis cluster (vcm) has been reported. With only the whole genome sequence of Amycolatopsis mediterranei available, additional complete genomes of other species may facilitate intra-generic comparative analysis of the genus.

Results

The complete genome of A. orientalis HCCB10007 comprises an 8,948,591-bp circular chromosome and a 33,499-bp dissociated plasmid. In total, 8,121 protein-coding sequences were predicted, and the species-specific genomic features of A. orientalis were analyzed in comparison with that of A. mediterranei. The common characteristics of Amycolatopsis genomes were revealed via intra- and inter-generic comparative genomic analyses within the domain of actinomycetes, and led directly to the development of sequence-based Amycolatopsis molecular chemotaxonomic characteristics (MCCs). The chromosomal core/quasi-core and non-core configurations of the A. orientalis and the A. mediterranei genome were analyzed reciprocally, with respect to further understanding both the discriminable criteria and the evolutionary implementation. In addition, 26 gene clusters related to secondary metabolism, including the 64-kb vcm cluster, were identified in the genome. Employing a customized PCR-targeting-based mutagenesis system along with the biochemical identification of vancomycin variants produced by the mutants, we were able to experimentally characterize a halogenase, a methyltransferase and two glycosyltransferases encoded in the vcm cluster. The broad substrate spectra characteristics of these modification enzymes were inferred.

Conclusions

This study not only extended the genetic knowledge of the genus Amycolatopsis and the biochemical knowledge of vcm-related post-assembly tailoring enzymes, but also developed methodology useful for in vivo studies in A. orientalis, which has been widely considered as a barrier in this field.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-363) contains supplementary material, which is available to authorized users.  相似文献   

12.
This study was carried out to assess the localization of hyaluronic acid (HA) and the distribution of glycoproteins in the gastrointestinal system of adult Hyla orientalis. Histochemical analysis of the gastrointestinal system in H. orientalis showed that mucous content included glycogene and/or oxidable dioles [periodic acid/Schiff (PAS)+], neutral or acid-rich (PAS/AB pH 2.5+), sialic acid residues (KOH/PAS+) and acid sulphate [Aldehyde fuchsin (AF)+] glycoproteins. However the mucus content was not the same in stomach, small and large intestine. The mucus content of stomach included only glycogene and/or oxidable dioles and sialic acid residues. Besides these histochemical methods, the localization of HA was detected using biotinylated hyaluronic acid binding protein labeled with streptavidin-fluorescein isothiocyanate (FITC). In the extracellular matrix of the submucosa, the reaction for HA was evident. Since HA was located in submucosa beneath the epithelial layer of gastrointestinal system, it has a significant role in hydric balance, and essential to provide the gastrointestinal system integrity and functionality. According to biometric results, there were statistical differences between small and large intestine in terms of the amount of material stained positive with PAS/AB, PAS, KOH/PAS and AF/AB. Additionally, number of goblet cells in the small and large intestine was significantly different.Key words: Gastrointestinal system, goblet cell, glycoproteins, hyaluronic acid, amphibian, Hyla.  相似文献   

13.
The specimen KNM-WT 15000 is an exceptionally complete 1.53 Myr juvenile skeleton of Homo erectus from West Turkana, Kenya. It therefore provides a unique opportunity to examine stature estimates of fossil hominids based strictly on long bone lengths. Using recovered axial and appendicular elements of KNM-WT 15000 that contributed to stature during life, we conclude that KNM-WT 15000 was much shorter at time-of-death than previous estimates that used only appendicular elements. We conservatively estimate stature-at-death at about 147 cm, although this individual could have been as short as 141 cm. Because long bone based estimates of stature also imply the axial skeletal proportion, our new stature estimate stems from the recognition of axial/appendicular disproportion in the individual KNM-WT 15000. It is possible that the peripubescent age-at-death of this specimen, and any resulting differential maturity between the appendicular and axial skeleton, may have contributed to previous overestimates of stature-at-death. However, the possibility that this individual was abnormal, as implied by axial/appendicular disproportion, remains to be fully tested. Regardless, these results suggest that some interpretations of the biology of early African Homo erectus, largely based upon KNM-WT 15000, should be viewed with caution. 5 Primate Evolution and Morphology Group, Department of Human  相似文献   

14.
15.
Gargantuavis philoinos was described as a giant terrestrial bird on the basis of various postcranial elements (synsacrum and pelvis, femur) from Late Cretaceous (Campanian-Maastrichtian) localities in Southern France. It has recently been suggested that these remains in fact belong to giant pterosaurs. A detailed comparison between bones referred to Gargantuavis and the corresponding skeletal elements of pterosaurs reveals considerable differences and confirms the avian nature of Gargantuavis. The broad pelvis of Gargantuavis is similar to that of various extinct graviportal terrestrial birds.  相似文献   

16.
The state of development of advanced embryos of the direct‐developing Ecuadorian caecilian Caecilia orientalis (Caeciliidae: Gymnophiona: Amphibia) was examined. Because it is established that development is correlated with reproductive modes in a number of features, we included comparison with taxa that represent the major reproductive modes and all of the modern normal tables and ossification sequences. The embryos of C. orientalis most closely resemble those of stage 47/48 Gegeneophis ramaswamii, an Indian caeciliid, and stage 47/48 Hypogeophis rostratus, a Seychellian caeciliid, both direct developers, in details of bone mineralization, chondrocranial degeneration, and vertebrogenesis. They are most like stage 45 H. rostratus in external features (gills, pigmentation, etc.). They are less similar to prehatchings of Ichthyophis kohtaoensis, an ichthyophiid with free‐living larvae, and to fetuses of the viviparous caeciliid Dermophis mexicanus and the viviparous typhlonectid Typhlonectes compressicauda at comparable total lengths in both skeletal development and external features. The similarity of developmental features among the direct‐developers suggests a correlation with mode of life history. A noteworthy feature is that C. orientalis has an armature of multiple rows of teeth on the lower jaw with tooth crowns that resemble the “fetal” teeth of viviparous taxa and that are covered with a layer of oral mucosal epithelium until full development and eruption, but the upper jaw bears a single row of widely spaced, elongate, slightly recurved teeth that resemble those of the adult. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The formation of limb girdles is a key‐novelty in vertebrate evolution. Although the knowledge of pattern formation, genetic, and molecular analysis of limb development has prodigiously grown over the past four decades, the morphogenesis of the pelvic element, joining the appendicular with the axial skeleton has poorly been investigated. Because of their heterochrony in development and evolution, axial and appendicular skeletal elements have seldom been seen as a cojoined morphological complex. The present study examines the pelvis morphogenesis in the mouse (Mus musculus), with special focuses on the axio‐appendicular linkage, the formation and number of elements, and the joint formation. Serial histological sections of specimens from Theiler stages (TH) 18–25 (Theiler, 1972) were examined using bright field microscopy. 3D‐models of the growing pelvis were reconstructed from these serial sections. The generated 3D‐models were subsequently integrated into a computer‐animated 4D‐visualization illustrating the complex developmental dynamics of the mammalian pelvis morphogenesis. The findings demonstrate that the pelvic element forms from a single mesenchymal condensation in close vicinity to the appendicular skeleton. From the early start of development the pelvic element is limb‐associated, and quite lately connects to the axial skeleton. Additionally, the 4D‐visualization of the entire developmental process reveals a yet unnoticed reorientation of the mouse pelvic element from an initial posteriorly oblique developmental position to a ventrally oblique definitive position. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The vertebrate head as a major novelty is directly linked to the evolutionary success of the vertebrates. Sequential information on the embryonic pattern of cartilaginous head development are scarce, but important for the understanding of its evolution. In this study, we use the oriental fire bellied toad, Bombina orientalis, a basal anuran to investigate the sequence and timing of larval cartilaginous development of the head skeleton from the appearance of mesenchymal Anlagen in post-neurulation stages until the premetamorphic larvae. We use different methodological approaches like classic histology, clearing and staining, and antibody staining to examine the larval skeletal morphology. Our results show that in contrast to other vertebrates, the ceratohyals are the first centers of chondrification. They are followed by the palatoquadrate and the basihyal. The latter later fuses to the ceratohyal and the branchial basket. Anterior elements like Meckel's cartilage and the rostralia are delayed in development and alter the ancestral anterior posterior pattern observed in other vertebrates. The ceratobranchials I–IV, components of the branchial basket, follow this strict anterior–posterior pattern of chondrification as reported in other amphibians. Chondrification of different skeletal elements follows a distinct pattern and the larval skeleton is nearly fully developed at Gosner Stage 28. We provide baseline data on the pattern and timing of early cartilage development in a basal anuran species, which may serve as guidance for further experimental studies in this species as well as an important basis for the understanding of the evolutionary changes in head development among amphibians and vertebrates.  相似文献   

19.
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior–posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the “mandibular” condensation, and that the “maxillary” condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.  相似文献   

20.
Gruber SL  Haddad CF  Kasahara S 《Genetica》2007,130(3):281-291
The chromosomes of hylids Hypsiboas albopunctatus, H. raniceps, and H. crepitans from Brazil were analyzed with standard and differential staining techniques. The former species presented 2n = 22 and 2n = 23 karyotypes, the odd diploid number is due to the presence of an extra element interpreted as B chromosome. Although morphologically very similar to the small-sized chromosomes of the A complement, the B was promptly recognized, even under standard staining, on the basis of some characteristics that are usually attributed to this particular class of chromosomes. The two other species have 2n = 24, which is the chromosome number usually found in the species of Hypsiboas karyotyped so far. This means that 2n = 22 is a deviant diploid number, resulted from a structural rearrangement, altering the chromosome number of 2n = 24 to 2n = 22. Based on new chromosome data, some possibilities were evaluated for the origin of B chromosome in Hypsiboas albopunctatus, as well as the karyotypic evolution in the genus, leading to the reduction in the diploid number of 2n = 24 to 2n = 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号