首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The metathoracic scent system in Heteroptera produces and releases defensive volatile compounds. The odor produced by predatory stink bugs differs from phytophagous bugs, suggesting a variation between the structure and function of the metathoracic scent system. The anatomy and ultrastructure of the external thoracic efferent system, scent gland, and reservoir in the stink bug predators Brontocoris tabidus, Podisus nigrispinus, and Supputius cincticeps (Heteroptera: Pentatomidae: Asopinae) were studied. External thoracic efferent systems of B. tabidus, P. nigrispinus, and S. cincticeps have anatomical differences in ostiole, peritreme, and evaporatorium. Scent glands have a secretory portion and a reservoir. The reservoir has irregular projections, and in B. tabidus, it is enlarged and heart shaped, whereas in P. nigrispinus and S. cincticeps it is flattened and semicircular. The secretory tissue of the scent gland has well-developed globular secretory cells that produce odorous compounds, and the reservoir has a single layer of cubical cells lined by a cuticular intima. Secretory cells are type III with an intracellular end apparatus, well-developed nucleus with decondensed chromatin, and cytoplasm rich in mitochondria, lysosomes, granules, and smooth endoplasmic reticulum. These findings suggest that there are differences in physiological function of the odoriferous system and the volatile compounds produced by the secretory cells, which may indicate variation in defensive behavior of these species.  相似文献   

2.
The closing apparatus in the metathoracic scent gland system of Notonecta glauca is described, and notes on the distribution of metathoracic scent glands in the family Notonectidae are included.  相似文献   

3.
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography?Cmass spectrometry (GC?CMS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC?CMS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.  相似文献   

4.
Bugs of the genus Lincus (Heteroptera : Pentatomidae) are attracted by volatile compounds emitted from the inflorescences of fertile palms. To define the basis of their chemical ecology, we have studied the metathoracic scent glands (MTG) of males and females of 2 species, L. spurcus and L. malevolus. The metathoracic scent gland system belongs to the diastomien type. The 2 glandular pores located between the mesothoracic and metathoracic coxae are associated with “crescent-like” evaporation areas. The large median reservoir, which is composed of one type of flattened pigmented epithelial cells, is flanked by multitubular lateral glands. These glands result from the apposition of 2 cell-type glandular units. The strip-like accessory gland is embedded in the reservoir wall. At its level, the thinner cuticular intima forms finger-like invaginations where a protein secretory product is secreted. Extracts of the volatile fraction of the metathoracic gland secretion were analyzed by capillary gas chromatography (GC) and by GC-mass spectrometry (GC-MS). These analyses exhibited a typical pentatomid MTG composition. The glands of L. spurcus and L. malevolus males and females contain 11 compounds: (E)-2-hexenal, 4-keto-(E)-2-hexenal, (E)-2-hexenoic acid, decane, (E)-2-octenal, undecene, undecane, (E)-2-octenly acetate, (E)-2-decenal, tridecane and (E)-2-decenyl acetate, including 3 major compounds, which represent 60–85% of the secretion in the 2 species: (E)-2-hexenal, (E)-2-octenal, and n-undecane. The 4-keto-(E)-2-hexenal is present only in the L. malevolus MTG, and represents 26% of its secretion. The female extracts of both species are characterized by the presence of (E)-2-hexenoic acid, which was detected in the male extracts as traces.  相似文献   

5.
The internal and external anatomy of the posterior metathoracic region, pregenital abdomen, and associated nervous system of the heteropteran infraorder Enicocephalomorpha are thoroughly described, using an array of state-of-the art techniques. Based on morphology, it is hypothesised which modes of communication these insects use. This study is based primarily on an undescribed species of Cocles Bergroth, 1905 (Enicocephalidae) and another undescribed species of Lomagostus Villiers, 1958 (Aenictopecheidae), but additional representatives of the infraorder are also examined. Our results are compared with the literature on other Heteroptera. The metathoracic scent gland system of Enicocephalomorpha uses the same muscles as that of more derived Heteroptera, although the efferent system is different. The presence of a tergal plate and well-developed longitudinal musculature in the families Enicocephalidae and Aenictopecheidae, as well as a sexually dimorphic set of sclerites and membranes that allow an as yet undetermined type of motion, may indicate the presence of vibrational signaling in the infraorder, although experimental confirmation is required. Our findings raise new research questions regarding heteropteran functional morphology and communication.  相似文献   

6.
The Heteroptera show a diversity of glands associated with the epidermis. They have multiple roles including the production of noxious scents. Here, we examine the cellular arrangement and cytoskeletal components of the scent glands of pentatomoid Heteroptera in three families, Pentatomidae (stink bugs), Tessaratomidae, and Scutelleridae (shield-backed bugs or jewel bugs). The glands are; (1) the dorsal abdominal glands, (2) the tubular glands of the composite metathoracic gland, and (3) the accessory gland component of the composite metathoracic gland. The dorsal abdominal glands are at their largest in nymphs and decrease in size in adults. The metathoracic gland is an adult-specific gland unit with a reservoir and multiple types of gland cells. The accessory gland is composed of many unicellular glands concentrated in a sinuous line across the reservoir wall. The lateral tubular gland is composed of two-cell units. The dorsal abdominal glands of nymphs are composed of three-cell units with a prominent cuticular component derived from the saccule cell sitting between the duct and receiving canal. The cuticular components that channel secretion from the microvilli of the secretory cell to the exterior differ in the three gland types. The significance of the numbers of cells comprising gland units is related to the role of cells in regenerating the cuticular components of the glands at moulting in nymphs.  相似文献   

7.
Abstract. The metathoracic scent gland system is a basic feature of the order Heteroptera. It occurs widely not only in the terrestrial forms (Geocorisae) and water-surface bugs (Amphibicorisae) but also in the totally aquatic bugs (Hydrocorisae) and their littoral relatives (Ochteridae, Gelastocoridae). In Hydrocorisae the metathoracic scent gland conforms to Carayon's (1971) omphalian type (orifice median and undivided or, if divided, orifices close together towards the mid-ventral line) but shows marked differences in structure and physiological function between species from different families. There is taxonomic interest in the distribution of the three distinctly different types of metathoracic occlusion apparatus. Naucoridae and Belostomatidae have a median lip-valve, Notonectidae and Gelastocoridae a pair of stop-valves, Corixidae a median flap-valve. The valve opener muscles are usually dorso-ventral but are ventral in Corixidae; the cuticular microsculpture in the metathoracic efferent system specifically in Hydrocorisae with stop-valves (Notonectidae, Gelastocoridae) is similar to that widely present in Geocorisae. Groupings of Hydrocorisae from variations in the metathoracic occlusion apparatus differ from others based upon variations in the chemical constitution of the secretions. It is considered that the facts now known on metathoracic scent gland structure and function accord well with the hypothesis that Hydrocorisae constitute a polyphyletic assemblage.  相似文献   

8.
Elasmucha ferrugata (Fabricius, 1787) (Heteroptera: Acanthosomatidae) provides maternal care of eggs and larvae. Adults of both sexes have functional anterior dorsal abdominal scent glands (DAGs). Study of all internal and external cuticular structures of DAGs revealed that no DAGs are fully functional in the 1st larval instar, and very probably they are only slightly functional in the 2nd instar. Median and posterior DAGs are undoubtedly not functional in adults. There exists sexual dimorphism in the number of multicellular glandular units in anterior glands in adults. The occurrence of cuticular ductules of these units proves these to be functional glands. This is best considered in combination with the findings of a well-developed evaporatorium. Developed cuticular intima of the gland reservoir and/or the nearly closed ostiole or ostiolar scar bears no information about the functionality of the gland.  相似文献   

9.

Background and Aims

Subtribe Centaureinae appears to be an excellent model group in which to analyse satellite DNA and assess the influence that the biology and/or the evolution of different lineages have had on the evolution of this class of repetitive DNA. Phylogenetic analyses of Centaureinae support two main phases of radiation, leading to two major groups of genera of different ages. Furthermore, different modes of evolution are observed in different lineages, reflected by morphology and DNA sequences.

Methods

The sequences of 502 repeat units of the HinfI satellite DNA family from 38 species belonging to ten genera of Centaureinae were isolated and compared. A phylogenetic reconstruction was carried out by maximum likelihood and Bayesian inference.

Key Results

Up to eight different HinfI subfamilies were found, based on the presence of a set of diagnostic positions given by a specific mutation shared by all the sequences of one group. Subfamilies V–VIII were mostly found in older genera (first phase of radiation in the subtribe, late Oligocene–Miocene), although some copies of these types of repeats were also found in some species of the derived genera. Subfamilies I–IV spread mostly in species of the derived clade (second phase of radiation, Pliocene to Pleistocene), although repeats of these subfamilies exist in older species. Phylogenetic trees did not group the repeats by taxonomic affinity, but sequences were grouped by subfamily provenance. Concerted evolution was observed in HinfI subfamilies spread in older genera, whereas no genetic differentiation was found between species, and several subfamilies even coexist within the same species, in recently radiated groups or in groups with a history of recurrent hybridization of lineages.

Conclusions

The results suggest that the eight HinfI subfamilies were present in the common ancestor of Centaureinae and that each spread differentially in different genera during the two main phases of radiation following the library model of satellite DNA evolution. Additionally, differential speciation pathways gave rise to differential patterns of sequence evolution in different lineages. Thus, the evolutionary history of each group of Centaureinae is reflected in HinfI satellite DNA evolution. The data reinforce the value of satellite DNA sequences as markers of evolutionary processes.  相似文献   

10.
蝽类昆虫的臭腺   总被引:3,自引:2,他引:1  
臭腺是蝽类昆虫的重要特征之一 ,几乎所有的蝽类昆虫都具有臭腺 ;本文简单介绍了蝽类臭腺的形态结构、发育和臭腺分泌物的组成及其生物学作用等 ,其中对猎蝽科昆虫的相关介绍较为详细。  相似文献   

11.
The Apocynaceae–Asclepiadoideae are well known for their specialized floral morphologies and pollination systems and many species have distinct floral aromas. However, our knowledge on the chemistry of floral volatiles in this plant family is relatively limited although it has been suspected that floral scent plays a key function for pollinator attraction. This is the third paper in a series of papers reporting on the floral odours of Asclepiadoideae. Floral odours of eleven species from seven genera (Cibirhiza, Fockea, Gymnema, Hoya, Marsdenia, Stephanotis and Telosma) of early diverging taxa of Apocynaceae–Asclepiadoideae, and two species of Secamone (Apocynaceae–Secamonoideae) were collected using headspace sampling and then analyzed via GC–MS. We detected 151 compounds, of which 103 were identified. The vast majority of chemicals identified are common components in flower odour bouquets of angiosperms. However, striking was the high relative amount of acetoin (97.6%) in the flower scent of Cibirhiza albersiana. This compound has rarely been reported as a flower scent component and is more commonly found in fermentation odours. Bray–Curtis similarities and Nonmetric-Multidiminsional Scaling (NMDS) analyses showed that each of the species has a distinct odour pattern. This is mostly due to only twelve compounds which singly or in different combinations dominated the scent of the species: the benzenoids benzyl acetate, benzaldehyde, methyl benzoate, and 2-phenylethyl alcohol; the monoterpenoids (E)-ocimene, (Z)-ocimene, linalool, and eucalyptol; and the aliphatic compounds acetoin, and (E,Z)-2,6-nonadienal. The floral scent compositions are discussed in relation to tribal affiliations and their potential role for pollinator attraction, and are compared with the scent data available from other Asclepiadoideae species.  相似文献   

12.
Members of the family Scutelleridae (Heteroptera: Pentatomomorpha: Pentatomoidea) are also called shield bugs because of the greatly enlarged scutellum, or jewel bugs because of the brilliant colours of many species. All scutellerids are phytophagous, feeding on various parts of their host plants. Due to lack of obvious synapomorphies and the failure to apply rigorous phylogenetic methods, the higher classification of Scutelleridae has been disputed for more than 150 years. Here we reconstructed a phylogeny of Scutelleridae based on complete sequences of 18S and 28S nuclear rDNAs and all 13 protein‐coding genes of the mitochondrial genome, with the sampled taxa covering all of the currently recognized subfamilies. The monophyly of Scutelleridae was confirmed by the congruence of the results of analyses conducted using Bayesian inference, maximum likelihood and maximum parsimony. The phylogenetic relationships among subfamilies were well resolved for the first time. Furthermore, time‐divergence studies estimated that the time of origin of Scutelleridae was in the Early Cretaceous (142.1–122.8 Ma), after the origin of the angiosperms. The diversification between the extant subfamilies of Scutelleridae and within the subfamilies occurred from the late Palaeocene to the late Miocene, simultaneously with the rise of the major groups of angiosperms and other phytophagous insects.  相似文献   

13.
In most of the six coreoid genera examined there are differences in the scent gland complex. This comprises a median, ventral, metathoracic reservoir with either one, two, or three pairs of accessory glands.

The nine adult bugs examined all produced a colourless, single-phase scent, the components of which were similar although the relative proportions varied. Either n-hexanal or n-hexyl acetate, or both, were usually the major constituents (about 90 per cent of the total) and n-hexanol and acetic acid were also present in amounts varying from traces to about 10 per cent. In one species n-butanal was detected and in two species n-butyl butyrate and (probably) butyric acid were present.

The characteristic, ester odour of these coreoid bugs is quite unlike that of pentatomid bugs examined so far and the two groups do not possess a single component in common; nevertheless there are interesting analogies between the scent components of both groups.  相似文献   


14.
The present investigation provides information on gross morphology and ultrastructure of salivary glands of species in Cicadidae in detail. The structure of the salivary glands of 11 representative species from 10 genera belonging to three subfamilies of Cicadidae was studied using light microscopy and transmission electron microscopy. In the examined species, the salivary glands are paired structures, and each of which is comprised of a principal gland (pg) and an accessory gland (ag). The pg is divided into anterior and posterior lobes, and both of which consist of numerous long digitate lobules. The lobules at the base of the long digitate lobules of posterior lobe are greatly short; here, we named as “short lobules.” All the lobules vary in size, disposition, length, and shape. The anterior lobe and posterior lobes are connected by an anterior–posterior duct (apd). Two efferent salivary ducts (esd), derived from corresponding posterior lobes, fuse to form a short common duct which enters into the saliva syringe. The ag is composed of a greatly tortuous and folded accessory salivary tube, a gular gland (gg) constituting of several acini, and an accessory salivary duct (asd). The asd joins the esd at the place where the latter emergences. Constituents and arrangement of the salivary glands, the number and shape of the long digitate lobules in the anterior and posterior lobes, and the visibility of the apd were promising characters for the taxonomic and phylogenetic analysis of Cicadoidea. The variations of secretory granules in size, shape, and electron density in lobule cells of pg of Platypleura kaempferi probably indicating different materials are synthesized. The absence of the infoldings of basal plasma membrane in the basal area of the cells and the presence of electron-lucent vesicles in the cytoplasm of the gg cells of P. kaempferi might suggest that the secretions of gg are more watery.  相似文献   

15.
《Zoology (Jena, Germany)》2015,118(3):176-182
The chemical defence of Heteroptera is primarily based on repellent secretions which signal the potential toxicity of the bug to its predators. We tested the aversive reactions of green lizards (Lacerta viridis) towards the major compounds of the defensive secretion of Graphosoma lineatum, specifically: (i) a mixture of three aldehydes: (E)-hex-2-enal, (E)-oct-2-enal, (E)-dec-2-enal; (ii) a mixture of these three aldehydes and tridecane; (iii) oxoaldehyde: (E)-4-oxohex-2-enal; (iv) secretion extracted from metathoracic scent glands of G. lineatum adults and (v) hexane as a non-polar solvent. All chemicals were presented on a palatable food (Tenebrio molitor larvae). The aversive reactions of the green lizards towards the mealworms were evaluated by observing the approach latencies, attack latencies and approach–attack intervals. The green lizards exhibited a strong aversive reaction to the mixture of three aldehydes. Tridecane reduced the aversive reaction to the aldehyde mixture. Oxoaldehyde caused the weakest, but still significant, aversive reaction. The secretion from whole metathoracic scent glands also clearly had an aversive effect on the green lizards. Moreover, when a living specimen of G. lineatum or Pyrrhocoris apterus (another aposematic red-and-black prey) was presented to the green lizards before the trials with the aldehyde mixture, the aversive effect of the mixture was enhanced. In conclusion, the mixture of three aldehydes had the strong aversive effect and could signal the potential toxicity of G. lineatum to the green lizards.  相似文献   

16.
The salivary glands of two species of Zoraptera, Zorotypus caudelli and Zorotypus hubbardi, were examined and documented mainly using transmission electron microscopy (TEM). The results obtained for males and females of the two species are compared and functional aspects related to ultrastructural features are discussed. The salivary glands are divided into two regions: the secretory cell region and the long efferent duct, the latter with its distal end opening in the salivarium below the hypopharyngeal base. The secretory region consists of a complex of secretory cells provided with microvillated cavities connected by short ectodermal ducts to large ones, which are connected with the long efferent duct. The secretory cell cytoplasm contains a large system of rough endoplasmic reticulum and Golgi apparatus producing numerous dense secretions. The cells of the efferent duct, characterized by reduced cytoplasm and the presence of long membrane infoldings associated with mitochondria, are possibly involved in fluid uptaking from the duct lumen.  相似文献   

17.
18.
Floral fragrances are an important component for pollinator attraction in beetle-pollinated flowers. Several genera in the Proteaceae contain beetle-pollinated species. However, there is no information on the floral scent chemistry of beetle-pollinated members of the family. In this paper we report on the spatial variation and differences between developmental stages in emission of inflorescence (flowerhead) volatiles of four South African Protea species (P. caffra, P. dracomontana, P. simplex, and P. welwitschii) that are pollinated by cetoniine beetles. The scents from different inflorescence parts (bracts, perianth, styles, and nectar) and from successive anthesis stages of whole inflorescences were sampled using dynamic headspace collection and identified using GC–MS. Although the four species shared many scent compounds, possibly reflecting their close phylogenetic relationships and common pollinators, they showed significant differences in overall scent composition due to various species-specific compounds, such as the unique tiglate esters found in the scent of P. welwitschii. The strongest emissions and largest number of volatiles, especially monoterpenes, were from inflorescences at full pollen dehiscence. Senescing inflorescences of two species and nectars of all species emitted proportionally high amounts of acetoin (3-hydroxy-2-butanone) and aromatic alcohols, typical fermentation products. As a consequence, the scent composition of nectar was much more similar among species than was the scent composition of other parts of the inflorescence. These results illustrate how the blends of compounds that make up the overall floral scent are a dynamic consequence of emissions from various plant parts.  相似文献   

19.
One new species, Lepidospora kwaii sp. n., is described from Thailand. Keys to the families, subfamilies, and genera of the family Nicoletiidae (Thysanura) and to the species of the genus Lepidospora of the world fauna are provided; data on the distribution and evolutionary trends of the bristletails of the genus Lepidospora are given.  相似文献   

20.
Scent glands, or osmophores, are predominantly floral secretory structures that secrete volatile substances during anthesis, and therefore act in interactions with pollinators. The Leguminosae family, despite being the third largest angiosperm family, with a wide geographical distribution and diversity of habits, morphology and pollinators, has been ignored with respect to these glands. Thus, we localised and characterised the sites of fragrance production and release in flowers of legumes, in which scent plays an important role in pollination, and also tested whether there are relationships between the structure of the scent gland and the pollinator habit: diurnal or nocturnal. Flowers in pre‐anthesis and anthesis of 12 legume species were collected and analysed using immersion in neutral red, olfactory tests and anatomical studies (light and scanning electron microscopy). The main production site of floral scent is the perianth, especially the petals. The scent glands are distributed in a restricted way in Caesalpinia pulcherrima, Anadenanthera peregrina, Inga edulis and Parkia pendula, constituting mesophilic osmophores, and in a diffuse way in Bauhinia rufa, Hymenaea courbaril, Erythrostemon gilliesii, Poincianella pluviosa, Pterodon pubescens, Platycyamus regnellii, Mucuna urens and Tipuana tipu. The glands are comprised of cells of the epidermis and mesophyll that secrete mainly terpenes, nitrogen compounds and phenols. Relationships between the presence of osmophores and type of anthesis (diurnal and nocturnal) and the pollinator were not found. Our data on scent glands in Leguminosae are original and detail the type of diffuse release, which has been very poorly studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号