首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomycin sensitivity-conferring protein (OSCP) is a water-soluble subunit of bovine heart mitochondrial H(+)-ATPase (F1-F0). In order to investigate the requirement of OSCP for passive proton conductance through mitochondrial F0, OSCP-depleted membrane preparations were obtained by extracting purified F1-F0 complexes with 4.0 M urea. The residual complexes, referred to as UF0, were found to be deficient with respect to OSCP, as well as alpha, beta, and gamma subunits of F1-ATPase, but had a full complement of coupling factor 6 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting techniques. These UF0 complexes had no intrinsic ATPase activity and were able to bind nearly the same amount of F1-ATPase in the presence of either OSCP or NH4+ ions alone, or a combination of the two. However, the preparations exhibited an absolute dependency on OSCP for conferral of oligomycin sensitivity to membrane-bound ATPase. The passive proton conductance in UF0 proteoliposomes was measured by time-resolved quenching of 9-amino-6-chloro-2-methoxyacridine or 9-aminoacridine fluorescence following a valinomycin-induced K(+)-diffusion potential. The data clearly establish that OSCP is not a necessary component of the F0 proton channel nor is its presence required for conductance blockage by the inhibitors oligomycin or dicyclohexylcarbodiimide. Furthermore, OSCP does not prevent or block passive H+ leakage. Comparisons of OSCP with the F1-F0 subunits from Escherichia coli and chloroplast lead us to suggest that mitochondrial OSCP is, both structurally and functionally, a hybrid between the beta and delta subunits of the prokaryotic systems.  相似文献   

2.
We have studied the functional effect of limited proteolysis by trypsin of the constituent subunits in the native and reconstituted F1F0 complex and isolated F1 of the bovine heart mitochondrial ATP synthase (EC 3.6.1.34). Chemical cross-linking of oligomycin-sensitivity conferring protein (OSCP) with other subunits of the ATP synthase and the consequent functional effects were also investigated. The results obtained show that the alpha subunit N-terminus is essential for the correct, functional connection of F1 to F0. The alpha-subunit N-terminus contacts OSCP which, in turn, contacts the F0I-PVP(b) and the F0-d subunits. The N-terminus of subunit alpha, OSCP, a segment of subunit d and the C-terminal and central region of F0I-PVP(b) subunits are peripherally located with respect to subunits gamma and delta which are completely shielded in the F1F0 complex against trypsin digestion. This qualifies the N-terminus of subunit alpha, OSCP, subunit d and F0I-PVP(b) as components of the lateral element of the stalk. These subunits, rather than being confined at one side of the complex which would leave most of the central part of the gamma subunit uncovered, surround the gamma and the delta subunits located in the central stalk.  相似文献   

3.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

4.
Interactions between oligomycin sensitivity conferring protein (OSCP) and subunits of beef heart mitochondrial F1-ATPase have been explored by cross-linking at an OSCP/F1 molar ratio close to 1 to ensure specific high-affinity binding of OSCP to F1 [see Dupuis et al. [Dupuis, A., Issartel, J.-P., Lunardi, J., Satre, M., & Vignais, P.V. (1985) Biochemistry (preceding paper in this issue)]]. Cross-links between F1 subunits and OSCP were established by means of two zero length cross-linkers, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide and N-(ethoxycarbonyl)-2-ethoxydihydroquinoline. The cross-linked products were separated by sodium dodecyl suflate-polyacrylamide gel electrophoresis. Coomassie blue staining revealed two cross-linked products of Mr 75 000 and 80 000 which could result from the binding of OSCP to the alpha and beta subunits of F1. Definite identification of the cross-linked products was achieved by chemical labeling with specific radiolabeled reagents and by blotting on nitrocellulose filters followed by immunocharacterization with anti-alpha, anti-beta, and anti-OSCP antibodies. OSCP was found to cross-link with the alpha and beta subunits of F1.  相似文献   

5.
An azido derivative of the oligomycin sensitivity conferring protein (OSCP) was prepared by alkylation with the bifunctional reagent p-azido phenacyl bromide. Azido-OSCP was fully biologically active in the dark. Upon photoirradiation of a mixture of beef heart mitochondrial F1-ATPase and azido-OSCP, the resulting covalent photoproducts were separated by polyacrylamide gel electrophoresis in the presence of Na dodecyl sulfate and characterized by an immunochemical procedure. OSCP was found to react with the alpha and the beta subunits of F1 with strong preference for the alpha subunit.  相似文献   

6.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

7.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

8.
Interactions of rat FXYD4 (corticosteroid hormone-induced factor (CHIF)), FXYD2 (gamma), or FXYD1 (phospholemman (PLM)) proteins with rat alpha1 subunits of Na(+),K(+)-ATPase have been analyzed by co-immunoprecipitation and covalent cross-linking. In detergent-solubilized membranes from HeLa cells expressing both gamma and CHIF or CHIF and hemagglutinin A-tagged CHIF, mixed complexes of CHIF and gamma or CHIF and hemagglutinin A-tagged CHIF with alpha/beta subunits are undetectable. This implies that the alpha/beta/FXYD protomer is the major species in detergent solution. A lipid-soluble cysteine-cysteine bifunctional reagent, dibromobimane, cross-links CHIF to alpha in colonic membranes but not gamma or PLM to alpha in kidney or heart membranes, respectively. Sequence comparisons of the FXYD proteins suggested that Cys-49 in the trans-membrane segment of CHIF could be involved. In detergent-solubilized HeLa cell membranes, dibromobimane cross-links wild-type CHIF to alpha but not the C49F mutant, and also the corresponding F36C mutant but not wild-type gammab, and F48C but not wild-type PLM. C140S, C338A, C804A, and C966S mutants of the alpha subunit have been expressed. Only the C140S mutant prevents cross-linking with CHIF. The data demonstrated the proximity of trans-membrane segments of CHIF, gamma, and PLM to M2 of alpha. Molecular modeling is consistent with location of the trans-membrane segment of all FXYD proteins between M2, M6, and M9 and the proximity of Cys-49 of CHIF or Phe-36 of gamma with Cys-140 of M2. Cross-linking also demonstrated CHIF-alpha and CHIF-beta proximities in extra-membrane regions, similar to the evidence for gamma-alpha and gamma-beta cross-links.  相似文献   

9.
Membrane vesicles and the F1-ATPase from Clostridium thermoaceticum were examined by electron microscopy. F1-ATPase particles projecting from the vesicles have a diameter of 10 to 12 nm. The F1-ATPase has an alpha 3 beta 3 gamma delta structure. The alpha and beta subunits are most likely arranged in an alternating sequence around a central protein mass consisting of the gamma and delta subunits.  相似文献   

10.
Proton translocating ATPases comprise a hydrophilic sector F1, a membrane sector F0, and, in the case of bovine mitochondria, a connecting "stalk" which is believed to contain the oligomycin sensitivity-conferring protein (OSCP) and coupling factor 6 (F6). The present study was undertaken to verify the accessibility of F6 and OSCP to trypsin and to examine the functional consequences of such treatment. Our data show that F1 binds equally to trypsin-treated F0 and untreated F0, but the former complexes exhibit cold lability and only partial sensitivity to oligomycin. Furthermore, these complexes fail to exhibit ATP-driven proton translocation or ATP-32Pi exchange activity. Trypsinization of F0 does not, however, inhibit passive proton conductance through the membrane sector but actually enhances it. Immunological data indicate extensive degradation of OSCP under conditions where F6 proteolysis is insignificant. Intact H+-ATPase complexes are relatively resistant to both the structural and functional effects of trypsin. We conclude that OSCP is predominantly an extrinsic protein which is shielded by F1 in the native membrane. F6 may also be an extrinsic protein but is shielded from trypsinization by OSCP and/or other F0 polypeptides. The exposed, trypsin-sensitive segments of OSCP are not required for passive proton conductance through F0 but may be required for ATP-driven reactions. We propose that bovine mitochondrial OSCP is a functional analogue of subunit b in the Escherichia coli H+-ATPase.  相似文献   

11.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The topography of the subunits of the membrane sector F0 of the ATP synthase complex in the bovine mitochondrial inner membrane was studied with the help of subunit-specific antibodies raised to the F0 subunits b, d, 6, F6, A6L, OSCP (oligomycin-sensitivity-conferring protein), and N,N' -dicyclohexylcarbodiimide (DCCD)-binding proteolipid and to the ATPase inhibitor protein (IF1) as an internal control. Exposure of F0 subunits in inverted and right-side-out inner membranes was investigated by direct antibody binding as well as by susceptibility of these subunits to degradation by various proteases as monitored by gel electrophoresis of the membrane digests and immunoblotting with the subunit-specific antibodies. Results show that subunits b, d, F6, A6L (including its C-terminal end) and OSCP were exposed on the matrix side. Sufficient masses of these subunits to recognize antibodies or undergo proteolysis were not exposed on the cytosolic side. This was also the case for subunit 6 and the DCCD-binding proteolipid on either side of the inner membrane. Quantitative immunoblotting in which bound radio-activity from [125I]protein A was employed to estimate the concentration of an antigen in a sample allowed the determination of the stoichiometry of several F0 subunits and IF1 relative to F1-ATPase. Results showed that per mol of F1 there are in bovine heart mitochondria 1 mol each of d, OSCP, and IF1, and 2 mol each of b and F6. Subunit 6 and the DCCD-binding proteolipid could not be quantitated, because the former transferred poorly to nitrocellulose and the latter's antibody did not bind [125I]protein A.  相似文献   

13.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A study is presented on the role of F0 and F1 subunits in oligomycin-sensitive H+ conduction and energy transfer reactions of bovine heart mitochondrial F0F1 H(+)-ATP synthase. Mild treatment with azodicarboxylic acid bis(dimethylamide) (diamide) enhanced oligomycin-sensitive H+ conduction in submitochondrial particles containing F1 attached to F0. This effect was associated with stimulation of the ATPase activity, with no effect on its inhibition by oligomycin, and depression of the 32Pi-ATP exchange. The stimulatory effect of diamide on H+ conduction decreased in particles from which F1 subunits were partially removed by urea. The stimulatory effect exerted by diamide in the submitochondrial particles with F1 attached to F0 was directly correlated with a decrease of the original electrophoretic bands of a subunit of F0 (F0I-PVP protein) and the gamma subunit of F1, with corresponding formation of their cross-linking product. In F0 liposomes, devoid of gamma subunit, diamide failed to stimulate H+ conduction and to cause disappearance of F0I-PVP protein, unless purified gamma subunit was added back. The addition to F0 liposomes of gamma subunit, but not that of alpha and beta subunits, caused per se inhibition of H+ conduction. It is concluded that F0I-PVP and gamma subunits are directly involved in the gate of the F0F1 H(+)-ATP synthase. Data are also presented indicating contribution to the gate of oligomycin-sensitivity conferral protein and of another protein subunit of F0, F6.  相似文献   

15.
The effect of guanidine hydrochloride on ATPase activity, gel filtration, turbidity, and the fluorescence emission intensity of mitochondrial F1-ATPase was examined. Purified F1 from bovine heart mitochondria was slowly inactivated at low denaturant concentration, and inactivation was associated with delta and epsilon subunit dissociation. delta and epsilon subunits were bound together to form a stable and soluble heterodimer. In parallel, appearance of turbidity was observed. This was caused by the formation of alpha3beta3gamma non-covalent aggregates, as analyzed by SDS-PAGE. Short periods of exposition of the F1 complex to high concentrations of guanidine hydrochloride (0.8-3 M) again induced deltaepsilon dissociation as a heterodimer and the formation of an inactive alpha3beta3gamma subcomplex. This eventually dissociated progressively into single subunits caused by partial unfolding, as evidenced through changes of the protein intrinsic fluorescence emission. Our results suggest that the delta and epsilon subunits are loosely bound to alpha3beta3gamma , and play an important role in determining structural stability to isolated mitochondrial F1-ATPase.  相似文献   

16.
Normal modes have been used to explore the inherent flexibility of the alpha, beta and gamma subunits of F(1)-ATPase in isolation and as part of the alpha(3)beta(3)gamma complex. It was found that the structural plasticity of the gamma and beta subunits, in particular, correlates with their functions. The N and C-terminal helices forming the coiled-coil domain of the gamma subunit are highly flexible in the isolated subunit, but more rigid in the alpha(3)beta(3)gamma complex due to interactions with other subunits. The globular domain of the gamma subunit is structurally relatively rigid when isolated and in the alpha(3)beta(3)gamma complex; this is important for its functional role in coupling the F(0) and F(1) complex of ATP synthase and in inducing the conformational changes of the beta subunits in synthesis. Most important, the character of the lowest-frequency modes of the beta(E) subunit is highly correlated with the large beta(E) --> beta(TP) transition. This holds for the C-terminal domain and the nucleotide-binding domain, which undergo significant conformational transitions in the functional cycle of F(1)-ATPase. This is most evident in the ligand-free beta(E) subunit; the flexibility in the nucleotide-binding domain is reduced somewhat in the beta(TP) subunit in the presence of Mg(2+).ATP. The low-frequency modes of the alpha(3)beta(3)gamma complex show that the motions of the globular domain of the gamma subunit and of the C-terminal and nucleotide binding domains of the beta(E) subunits are coupled, in accord with their function. Overall, the normal mode analysis reveals that F(1)-ATPase, like other macromolecular assemblies, has the intrinsic structural flexibility required for its function encoded in its sequence and three-dimensional structure. This inherent plasticity is an essential aspect of assuring a small free energy cost for the large-scale conformational transition that occurs in molecular motors.  相似文献   

17.
This study describes specific intramolecular covalent cross-linking of the gamma to alpha and gamma to beta subunits of pig kidney Na,K-ATPase and rat gamma to alpha co-expressed in HeLa cells. For this purpose pig gammaa and gammab sequences were determined by cloning and mass spectrometry. Three bifunctional reagents were used: N-hydroxysuccinimidyl-4-azidosalicylic acid (NHS-ASA), disuccinimidyl tartrate (DST), and 1-ethyl-3-[3dimethylaminopropyl]carbodiimide (EDC). NHS-ASA induced alpha-gamma, DST induced alpha-gamma and beta-gamma, and EDC induced primarily beta-gamma cross-links. Specific proteolytic and Fe(2+)-catalyzed cleavages located NHS-ASA- and DST-induced alpha-gamma cross-links on the cytoplasmic surface of the alpha subunit, downstream of His(283) and upstream of Val(440). Additional considerations indicated that the DST-induced and NHS-ASA-induced cross-links involve either Lys(347) or Lys(352) in the S4 stalk segment. Mutational analysis of the rat gamma subunit expressed in HeLa cells showed that the DST-induced cross-link involves Lys(55) and Lys(56) in the cytoplasmic segment. DST and EDC induced two beta-gamma cross-links, a major one at the extracellular surface within the segment Gly(143)-Ser(302) of the beta subunit and another within Ala(1)-Arg(142). Based on the cross-linking and other data on alpha-gamma proximities, we modeled interactions of the transmembrane alpha-helix and an unstructured cytoplasmic segment SKRLRCGGKKHR of gamma with a homology model of the pig alpha1 subunit. According to the model, the transmembrane segment fits in a groove between M2, M6, and M9, and the cytoplasmic segment interacts with loops L6/7 and L8/9 and stalk S5.  相似文献   

18.
Polyacrylamide gel electrophoresis in the presence of a cationic detergent, tetradecyltrimethylammonium bromide (TDAB) has been compared to electrophoresis in the presence of an anionic detergent, sodium dodecyl sulfate (SDS). Although, in both systems, the peptides generally migrated as a function of their molecular weight, the TDAB electrophoresis permitted us to obtain a much better resolution of several peptides of the mitochondrial F0-F1-ATPase, especially for the alpha and beta subunits and for the oligomycin sensitivity conferring protein (OSCP). The differences between the two electrophoretic profiles have been used to devise a new technique of two-dimensional electrophoresis using successively anionic and cationic detergents. This method could be very useful in the case of membrane proteins, which are generally soluble only in the presence of powerful ionic detergents. It has been particularly successful in resolving the small peptides of the F0-F1-ATPase which were difficult to differentiate by other techniques in one- or two-dimensional polyacrylamide gel electrophoresis.  相似文献   

19.
Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.  相似文献   

20.
The preparation of highly purified F1-ATPase from Micrococcus sp. ATCC 398 by application of DEAE-Sepharose CL-6B chromatography as final step is described. This enzyme consists of five subunits of different molecular weight: alpha (65000), beta (55000),gamma (35000), delta (20000), and epsilon (17000). Disc electrophoresis on 5% polyacrylamide gels removes the epsilon-polypeptide yielding an active ATPase complex with four different subunits: alpha, beta, gamma, delta. Additionally, by variation of the ionic strength delta can (partly) removed allowing the isolation by disc electrophoresis of an active ATPase complex which consists only of three different subunits alpha, beta, and gamma. If the DEAE-Sepharose chromatography is carried out in the absence of diisopropyl phosphofluoridate (auto)proteolysis yields both an active ATPase with the subunits alpha+ (mol. wt 61000), beta, gamma, and delta and an inactive protein complex with the subunits alpha+, beta, gamma, delta, and two additional polypeptides a (mol. wt 38000) and b (mol. wt 23000). The latter two polypeptides are supposedly fragments of alpha+-chains which have become partially cleaved by (auto)proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号