首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amino acid sequences of the cysteinyl peptides of Spirulina sp. glutathione reductase were determined. Spirulina glutathione reductase was covalently bound to Thiopropyl-Sepharose 6B in the presence of 8M urea through thiol-disulfide exchange. After tryptic digestion, 4 distinct cysteinyl peptides were finally isolated from NADPH-reduced glutathione reductase and 2 from oxidized glutathione reductase. The amino acid sequences of the two cysteinyl peptides which could not be isolated from the oxidized glutathione reductase were very similar to those around the active site disulfide of the other flavoprotein disulfide oxidoreductases and a unique replacement of asparagine and valine by isoleucine and arginine between the two cysteine residues was found. The other two peptides isolated from both oxidized and reduced glutathione reductase also show considerable homology to the corresponding parts of human and Escherichia coli glutathione reductases.  相似文献   

2.
The content of reduced glutathione and of glutathione disulfide as well as the activities of glutathione reductase, glutathione peroxidase, glutathione S-transferases, catalase and superoxide dismutases were determined in human hepatoma Hep 3B cells in relation to free-radical toxicity in order to appreciate the defense capacities of these cells compared to data on normal hepatocytes. When Hep 3B cells were exposed to lindane, a known inducer of free-radical production, superoxide dismutase activity appeared as the best-adapted cellular parameter for early detection of the resulting free-radical toxicity.Abbreviations AAS atomic absorption spectrometry - CDNB 1-chloro-2,4-dinitrobenzene - DMEM Dulbecco's modified Eagle medium - GPx glutathione peroxidase - G.Red glutathione reductase - GSH reduced glutathione - GSSG glutathione disulfide - GST glutathione S-transferases - Prot proteins - SOD superoxide dismutase  相似文献   

3.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475-5480). The new steps in the purification scheme include affinity chromatography on 2',5' ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative 'rocket' immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2',5' ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

4.
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer worldwide and is associated with poor prognosis. The current study aimed to assess the therapeutic efficacy of resveratrol when administered alone and in combination with nicotinamide against alcohol‐aflatoxin B1‐induced HCC. Results reveal that during the development and progression of cancer, there was a decline in the level of antioxidant enzymes catalase, glutathione peroxidase, glutathione reductase (GR), antioxidant glutathione, and glutathione S‐transferase, which is an enzyme of detoxification pathways. Treatment of resveratrol restored the level of catalase and glutathione peroxidase toward normal in alcohol‐aflatoxin B1‐induced HCC; however, nicotinamide worked in concert with resveratrol only in upregulating the activity of glutathione reductase, glutathione level, and glutathione S‐transferase. SIRT1 agonist resveratrol was observed to modulate the activity of antioxidant enzymes by negatively regulating the expression of nuclear factor‐κB (NF‐κB) in alcohol‐aflatoxin B1‐induced HCC, thereby suggesting a cross‐talk between antioxidant enzymes SIRT1 and NF‐κB during the development and progression of HCC and its therapeutics by resveratrol and nicotinamide.  相似文献   

5.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475–5480). The new steps in the purification scheme include affinity chromatography on 2′,5′ ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative ‘rocket’ immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2′,5′ ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

6.
The effects of cytosol, NADPH and reduced glutathione (GSH) on the activity of 5'-deiodinase were studied by using washed hepatic microsomes from normal fed rats. Cytosol alone had little stimulatory effect on the activation of microsomal 5'-deiodinase. NADPH had no stimulatory effect on the microsomal 5'-deiodinase unless cytosol was added. 5'-deiodinase activity was greatly enhanced by the simultaneous addition of NADPH and cytosol (P less than 0.001); this was significantly higher than that with either NADPH or cytosol alone (P less than 0.001). GSH was active in stimulating the enzyme activity in the absence of cytosol, but the activity of 5'-deiodinase with 62 microM-NADPH in the presence of cytosol was significantly higher than that with 250 microM-GSH in the presence of the same concentration of cytosol (P less than 0.001). The properties of the cytosolic components essential for the NADPH-dependent activation of microsomal 5'-deiodinase independent of a glutathione/glutathione reductase system were further assessed using Sephadex G-50 column chromatography to yield three cytosolic fractions (A, B and C), wherein A represents pooled fractions near the void volume, B pooled fractions of intermediate Mr (approx. 13 000), and C of low Mr (approx. 300) containing glutathione. In the presence of NADPH (1 mM), the 5'-deiodination rate by hepatic washed microsomes is greatly increased if both A and B are added and is a function of the concentrations of A, B, washed microsomes and NADPH. A is heat-labile, whereas B is heat-stable and non-dialysable. These observations provide the first evidence of an NADPH-dependent cytosolic reductase system not involving glutathione which stimulates microsomal 5'-deiodinase of normal rat liver. The present data are consistent with a deiodination mechanism involving mediation by a reductase (other than glutathione reductase) in fraction A of an NADPH-dependent reduction of a hydrogen acceptor in fraction B, followed by reduction of oxidized microsomal deiodinase by the reduced acceptor (component in fraction B).  相似文献   

7.
Glutathione reductase (NAD(P)H : oxidised-glutathione oxidoreductase, EC 1.6.4.2) was purified from baker's yeast by a new procedure involving affinity chromatography on 2',5'-ADP-Sepharose 4B. The yield was 65% of essentially homogeneous enzyme. The activity was assayed with both glutathione disulfide (GSSG) and the mixed disulfide of coenzyme A and glutathione (CoAssg). The two disulfide substrates gave coinciding activity profiles and a constant ratio of the activities in different chromatographic and electrophoretic systems. No evidence was obtained for the existence of a reductase specific for CoASSG distinct from glutathione reductase. It is concluded that normal baker's yeast contains a single reductase active with both GSSG and CoASSG.  相似文献   

8.
An investigation of sulfate reduction in B tsnC*7004, a mutant of Escherichia coli lacking thioredoxin, is reported. Although thioredoxin is indispensable for the adenosine 3'-phosphate 5'-phosphosulfate (PAPS) sulfotransferase reaction under the usual conditions of assay in extracts of wild-type cells, the mutant grew as well as the wild type on sulfate, indicating that sulfate reduction is not rate limiting for growth. Another cofactor for the PAPS sulfotransferase reaction was found in extracts of the mutant that is absent from wild type cells. This cofactor was indistinguishable from thioredoxin in molecular weight but had a slightly different isoelectric point, allowing a separation of the two types of molecules by isoelectric focusing. Whereas electrons from nicotinamide adenine dinucleotide phosphate, reduced form, could be transferred via thioredoxin reductase or via glutathione and glutathione reductase to reduce thioredoxin in extracts of wild-type cells, electrons from nicotinamide adenine dinucleotide, reduced form, could only be transferred to the cofactor of the mutant via glutathione and glutathione reductase. All of the other available mutants blocked in sulfate reduction in E. coli contained normal levels of thioredoxin. The "PAPS reductase" mutant is shown to be blocked in the PAPS sulfotransferase reaction. We conclude that the cofactor found in mutant B tsnC*7004 is probably a mutated thioredoxin with an amino acid substitution that alters the isoelectric point and the reactivity with thioredoxin reductase.  相似文献   

9.
Infection of tomato leaves with the necrotrophic fungus Botrytis cinerea resulted in substantial changes in enzymatic and non-enzymatic components of the ascorbate-glutathione cycle as well as in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST), and l-galactono-gamma-lactone dehydrogenase (GLDH) activities. In the initial phase of the 5 d experiment CuZn SOD was the most rapidly induced isoform (up to 209% of control), whereas later on its activity increase was not concomitant with the constant total SOD enhancement. Starting from the second day B. cinerea infection diminished the mitochondrial antioxidant capacity by decreasing activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) as well as declining ascorbate and glutathione contents. This was accompanied by dehydroascorbate (DHA) and oxidized glutathione (GSSG) accumulation that resulted in ascorbate and glutathione redox ratios decreases. The strongest redox ratio decline of 29% for ascorbate and of 34% for glutathione was found on the 3rd and 2nd days, respectively. Glutathione reductase (GR) induction (185% of control 2 d after inoculation) was insufficient to overcome the decreased antioxidant potential of glutathione. Changes in the ascorbate pool size were closely related to the activity of l-galactono-gamma-lactone dehydrogenase (GLDH). The activities of two glutathione-dependent enzymes: GSH-Px and GST were increased from day 1 to day 4. These results demonstrated that in B. cinerea-tomato interaction mitochondria could be one of the main targets for infection-induced oxidative stress.  相似文献   

10.
A mutant of Escherichia coli that contains essentially no detectable glutathione has been isolated. The mutant contains a very low level of the enzyme glutathione synthetase and accumulates lambda-glutamyl cysteine at a concentration approximately equal to the level of glutathione found in its parent. No significant differences in growth were observed between the mutant and its parent. However, the activity of at least one enzyme was found to be affected by the absence of glutathione; the specific activity of the B1 subunit of ribonucleoside diphosphate reductase was greatly reduced. The possibility that the decreased B1 activity is due to a mutation in the structural gene coding for B1 or its regulatory gene could be eliminated. This suggests that one role of glutathione in the cell is to maintain at least this one protein in an active state. We propose the designation gshB for the gene coding for glutathione synthetase.  相似文献   

11.
Glutathione reductase has been purified to at least 98% homogeneity from calf liver. An essential part in the procedure involves affinity chromatography on 2′,5′-ADP-Sepharose 4B to which the enzyme remains bound in the presence of 0.4 m phosphate. This step separates glutathione reductase from the closely related thioredoxin reductase. Some of the physical and catalytic properties as well as the amino acid composition of the enzyme are reported.  相似文献   

12.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

13.
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress.  相似文献   

14.
Aldose reductase (AR), a member of the aldo-keto reductase superfamily, has been implicated in the etiology of secondary diabetic complications. However, the physiological functions of AR under euglycemic conditions remain unclear. We have recently demonstrated that, in intact heart, AR catalyzes the reduction of the glutathione conjugate of the lipid peroxidation product 4-hydroxy-trans-2-nonenal (Srivastava, S., Chandra, A., Wang, L., Seifert, W. E., Jr., DaGue, B. B., Ansari, N. H., Srivastava, S. K., and Bhatnagar, A. (1998) J. Biol. Chem. 273, 10893-10900), consistent with a possible role of AR in the metabolism of glutathione conjugates of aldehydes. Herein, we present several lines of evidence suggesting that the active site of AR forms a specific glutathione-binding domain. The catalytic efficiency of AR in the reduction of the glutathione conjugates of acrolein, trans-2-hexenal, trans-2-nonenal, and trans,trans-2,4-decadienal was 4-1000-fold higher than for the corresponding free alkanal. Alterations in the structure of glutathione diminished the catalytic efficiency in the reduction of the acrolein adduct, consistent with the presence of specific interactions between the amino acid residues of glutathione and the AR active site. In addition, non-aldehydic conjugates of glutathione or glutathione analogs displayed active-site inhibition. Molecular dynamics calculations suggest that the conjugate adopts a specific low energy configuration at the active site, indicating selective binding. These observations support an important role of AR in the metabolism of glutathione conjugates of endogenous and xenobiotic aldehydes and demonstrate, for the first time, efficient binding of glutathione conjugates to an aldo-keto reductase.  相似文献   

15.
Properties and functions of glutathione reductase in plants   总被引:14,自引:0,他引:14  
The assay and in vitro characterization of glutathione reductase (EC 1.6.4.2) is discussed. In vivo the H2O2-scavenging system in chloroplasts is the best documented role of reduced glutathione and glutathione reductase in plants. Similarly, redaction of H2O2, outside of the chloroplasts, requires glutathione and glutathione reductase; but the pathway, in terms of intermediates, is controversial. The notion that biological stress frequently causes cellular oxidation has lead to the suggestion that glutathione and glutathione reductase may play a role in stress resistance or tolerance mechanisms. The changes in glutathione reductase levels in response to low temperature, oxidative stress and drought are discussed.  相似文献   

16.
An expression vector, pKGR, for the gor gene from Escherichia coli encoding glutathione reductase was constructed by subcloning of an AvaII fragment of the Clarke & Carbon bank plasmid pGR [Greer & Perham (1986) Biochemistry 25, 2736-2742] into the plasmid pKK223-3. The expression of glutathione reductase from the plasmid pKGR was found to have been successfully placed under the control of the tac promoter. Transformation of E. coli cells with this plasmid resulted in 100-200-fold increase in glutathione reductase activity in cell-free extracts. A rapid purification procedure for the enzyme, based on affinity chromatography on Procion Red HE-7B-CL-Sepharose 4B, was developed. The purified enzyme was homogeneous as judged by SDS/polyacrylamide-gel electrophoresis, and all its properties were consistent with the DNA sequence of the gene [Greer & Perham (1986) Biochemistry 25, 2736-2742] and with those previously reported for E. coli glutathione reductase [Mata, Pinto & Lopez-Barea (1984) Z. Naturforsch. C. Biosci. 39, 908-915]. These experiments have enabled an investigation of the protein chemical and mechanistic properties of the enzyme by site-directed mutagenesis.  相似文献   

17.
H S Hsieh  H E Ganther 《Biochemistry》1975,14(8):1632-1636
The production of acid-volatile selenide (apparently H2Se) was catalyzed by glutathione reductase in an anaerobic system containing 20 mM glutathione, 0.05 mM sodium selenite, a TPNH-generating system, and microgram quantities of highly purified yeast glutathione reductase. H2Se production in this system was proportional to glutathione reductase concentration and was maximal at pH 7. Significant nonenzymic H2Se production occurred in the system lacking glutathione reductase and TNPH. A concentration of arsenite (0.1 mM) which does not inhibit glutathione reductase inhibited selenide volatilization, as did bovine serum albumin (1.67 mg/ml). Both appear to inhibit Se volatilization by reacting with the selenide product(s). The selenotrisulfide derivative of glutathione (GSSeSG) was readily converted to H2Se by glutathione reductase and TPNH without the addition of glutathione. These results suggest that GSSeSG formed nonenzymically from glutathione and selenic undergoes stepwise reduction by glutathione reductase (or excess GSH) to GSSeH and finally to H2Se. The same pathway operates when glutathione is used as the reducing agent but to a lesser extent.  相似文献   

18.
The substrate specificity of the human enzyme glutathione reductase was changed from its natural substrate glutathione to trypanothione [N1,N8-bis(glutathionyl)spermidine] by site-directed mutagenesis of two residues. The glutathione analogue, trypanothione, is the natural substrate for trypanothione reductase, an enzyme found in trypanosomatids and leishmanias, the causative agents of diseases such as African sleeping sickness, Chagas disease, and Oriental sore. The rational bases for our mutational experiments were the availability of a high-resolution X-ray structure for human glutathione reductase with bound substrates, the active site sequence comparisons of human glutathione reductase and the trypanothione reductases from Trypanosoma congolense and Trypanosoma cruzi, a complementary set of mutants in T. congolense trypanothione reductase, and the properties of substrate analogues of trypanothione. Mutation of two residues, A34----E34 and R37----W37, in the glutathione-binding site of human glutathione reductase switches human glutathione reductase into a trypanothione reductase with a preference for trypanothione over glutathione by a factor of 700 using kcat/Km as a criterion.  相似文献   

19.
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.  相似文献   

20.
Treatment with Ni(NO3)2 leads to the formation of reactive oxygen species (ROS) in the green alga Scenedesmus acutus f. alternans, causing lipid peroxidation. This effect was stronger in a Ni-sensitive strain, UTEX72, than in a Ni-resistant strain, B4. In the resistant strain, Ni induced an increased ratio of reduced to oxidized glutathione (GSH:GSSG), whereas it caused a lowered ratio in the sensitive strain. Enzymes involved in the control of ROS were studied in these strains as well as two others that have shown different degrees of nickel resistance. The resistant strain, B4, which grows while containing large amounts of internal Ni, had much higher levels of glutathione reductase and catalase than the other strains. The sensitive strain, UTEX72, had higher levels of glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate dehydrogenase than did strain B4. The resistant strains, Ni-Tol and Cu-Tol, derived from strain UTEX72, which are partly able to exclude Ni, had enzyme profiles that resembled that of UTEX72 more closely than that of B4. Treatment with 10 and 100 microM Ni for 4 or 22 h had complex effects on enzyme levels in all four strains. Ni decreased glutathione reductase in B4, slightly increased it in Ni-Tol and Cu-Tol, and did not affect the low levels of this enzyme in UTEX72. Ni lowered glutathione peroxidase in B4 and either did not affect it or slightly raised it in the other strains. Ni lowered catalase in B4 and did not affect the other strains. Superoxide dismutase was raised in B4 and Ni-Tol and lowered in Cu-Tol and UTEX72, and glucose-6-phosphate dehydrogenase was lowered in all four strains. These results suggest that one major mechanism of Ni resistance, especially in strain B4, may be the ability to combat the formation of ROS when exposed to this metal, likely by maintaining a high GSH:GSSG ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号