共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2− mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl a/b-protein complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid. 相似文献
2.
The transverse orientation of the light-harvesting chlorophyll a/b protein complex of Photosystem II (LHC II) in the thylakoid membrane of pea was investigated using surface radioiodination with Iodo-GenTM. The labelling effects on LHC II of four different membrane preparations were compared. One preparation was oriented right-side-out (intact thylakoids); two of them had an inside-out orientation exposing the lumenal surface (inside-out vesicles; PS II particles) and one had both sides of the membrane exposed (mechanically damaged thylakoids). It was found that LHC II could be iodinated only in membrane preparations with an exposed lumenal surface. Isolated apoproteins were chemically cleaved. Fragments analysis revealed a tyrosine residue located eight amino acids from the C-terminus as the single iodination site. It is concluded that the C-terminus of LHC II points towards the lumental side of the thylakoid. Differences in the labelling behaviour of the LHC apoproteins could be assigned to a heterogeneity in the C-terminal region in which the tyrosine residue is replaced by phenylalanine. 相似文献
3.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2− mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl
complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid. 相似文献
4.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll a/b protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS II and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS II centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS II component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS II contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll a/b ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS II and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS II and PS IIβ to the fluorescence induction kinetics. PS II characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP. 相似文献
5.
A gene for a light-harvesting chlorophyll (Chl) a/b-binding protein (LHCP) from pea (Pisum sativum L.) has been cloned in a bacterial expression vector. Bacteria (Escherichia coli) transformed with this construct produced up to 20% of their protein as pLHCP, a derivative of the authentic precursor protein
coded for by the pea gene with three amino-terminal amino acids added and-or exchanged, or as a truncated LHCP carrying a
short amino-terminal deletion into the mature protein sequence. Following the procedure of Plumley and Schmidt (1987, Proc.
Natl. Acad. Sci. USA84, 146–150), all bacteria-produced LHCP derivatives can be reconstituted with acetone extracts from pea thylakoids or with
isolated pigments to yield pigment-protein complexes that are stable during partially denaturing polyacrylamide-gel electrophoresis.
The spectroscopic properties of these complexes closely resemble those of the light-harvesting complex associated with photosystem
II (LHCII) isolated from pea thylakoids. The pigment requirement for the reconstitution is highly specific for the pigments
found in native LHCII: Chl a and b as well as at least two out of three xanthophylls are necessary. Varying the Chl a:Chl
b ratios in the reconstitution mixtures changes the yields of complex formed but not the Chl a:Chl b ratio in the complex.
We conclude that LHCP-pigment assembly in vitro is highly specific and that the complexes formed are structurally similar
to LHCII. The N-terminal region of the protein can be varied without affecting complex formation and therefore does not seem
to be involved in pigment binding.
Dedicated to Professor Hans Mohr on the occasion of his 60th birthday 相似文献
6.
7.
Thylakoids of the prokaryote Prochloron, present as a symbiont in ascidians isolated from the Red Sea at Eilat (Israel), showed polypeptide electrophoretic patterns comparable to those of thylakoids from eukaryotic oxygen-evolving organisms. Low temperature, fluorescence spectroscopy of Prochloron, having a chlorophyll a/b ratio of 3.8–5, and frozen in situ, demonstrated the presence of Photosystem II chlorophyll-protein complex emitting at 686 and 696 nm, as well as the emission band of Photosystem I at 720 nm which was so far not observed in Prochloron species. The latter emission was absent, if the cells or thylakoids were isolated prior to freezing. Energy transfer from chlorophyll b to chlorophyll a could be demonstrated to occur in vivo. The chlorophyll a,b-protein complex of Photosystem II, isolated by non-denaturing polyacrylamide gel electrophoresis, contained one major polypeptide of 34 kDa. The polypeptide was phosphorylated in vitro by a membrane-bound protein kinase which was not stimulated by light. A light-independent protein kinase activity was also found in isolated thylakoids of another prokaryote, the cyanophyte Fremyella diplosiphon. State I–State II transition could not be demonstrated in Prochloron by measurements of modulated fluorescence intensity in situ. We suggest that the presence of a light-independent thylakoid protein kinase of Prochloron, collected in the Red Sea at not less than 30 m depth, might be the result of an evolutionary process whereby this organism has adapted to an environment in which light, absorbed preferentially by Photosystem II, prevails. 相似文献
8.
Dark-grown cucumber seedlings were exposed to intermittent light (2 min light and 98 min dark) and then cotyledons were incubated with 50 mM CaCl2 in the dark. Chlorophyll (Chl) a was selectively accumulated under intermittent light and Chl b was accumulated during the subsequent dark incubation with CaCl2. The change in chlorophyll-protein complexes during Chl b accumulation induced by CaCl2 in the dark was investigated by SDS-polyacrylamide gel electrophoresis. Chlorophyll-protein complex I and free chlorophyll were major chlorophyll-containing bands of the cotyledons intermittently illuminated 10 times. When these cotyledons were incubated with CaCl2 in the dark, the light-harvesting Chl a/b-protein complex was formed. When the number of intermittent illumination periods was extended to 55, small amounts of Chl b and light-harvesting Chl a/b-protein complex were recognized at the end of intermittent light treatment, and these two pigments were further increased during the subsequent incubation of the cotyledons with CaCl2 in the dark compared to water controls. 相似文献
9.
The amount of in-vitro translatable mRNA of the light-harvesting chlorophyll a/b-binding protein (LHCP) of photosystem II strongly increases in darkness (D) after a 5-min red-light pulse while continuous illumination of mustard seedlings with far-red (FR), red or white light leads only to a slight increase in the amount of translatable LHCP-mRNA. No increase can be observed after a long-wavelength FR (RG9-light) pulse. However, a FR pretreatment prior to the RG9-light pulse strongly increase LHCP-mRNA accumulation in subsequent D. This is not observed in the case of the mRNA for the small subunit of ribulose-1.5-bisphosphate carboxylase. The increase of LHCP-mRNA in D after a FR pretreatment can be inhibited by a reillumination of the seedlings with FR. The inhibition of LHCP-mRNA accumulation during continuous illumination with FR and the strong increase in D following a FR illumination was found to be independent of chlorophyll biosynthesis since no correlation between chlorophyll biosynthesis and translatable LHCP-mRNA levels could be detected. Even strong changes in the amount of intermediates of chlorophyll biosynthesis caused by application of levulinic acid or 5-aminolevulinic acid did not affect LHCP-mRNA levels. Therefore, we conclude that the appearance of LHCP-mRNA is inhibited during continuous illumination, even though illumination leads to a storage of a light singal which promotes accumulation of translatable LHCP-mRNA in D.Abbreviations c
continuous
- Chl
chlorophyll
- D
darkness
- FR
far-red light (3.5 W·m-2)
- LHCP
light-harvesting chlorophyll a/b-binding protein of photosystem II
- NF
Norfluration
- PChl
protochlorophyll(ide)
- Pfr
far-red absorbing form of phytochrome
- Ptot
total phytochrome
- R
red light (6.8 W·m-2)
- RG9-light
long-wavelength FR (10 W·m-2)
- SSU
small subunit of ribulose-1.5-bisphosphate carboxylase
- WL
white light
- ()
Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system 相似文献
10.
The ATP-induced quenching of chlorophyll fluorescence in chloroplasts of higher plants is shown to be inhibited when the mobility of the protein complexes into the thylakoid membranes is reduced. Its occurrence also requires the presence of LHC complexes and the ability of the membranes to unstack.These observations, in addition to a slight increase of charge density of the surface-as indicated by 9-aminoacridine fluorescence and high salt-induced chlorophyll fluorescence studies-and partial unstacking of the membranes-as monitored by digitonin method and 540 nm light scattering changes-after phosphorylation, suggest that the ATP-induced quenching of chlorophyll fluorescence could reflect some lateral redistribution of membrane proteins in the lipid matrix of the thylakoids.Abbreviations ATP
adenosine triphosphate
- 9-AA
9-aminoacridine
- Chl
chlorophyll
- EDTA
ethylenediaminetetraacetate
- GDA
glutaraldehyde
- Hepes
N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid
- LHC
light-harvesting chlorophyll a/b complex PS photosystem 相似文献
11.
Diurnal oscillations of steady-state mRNA levels encoding the chlorophyll a/b-binding proteins were monitored inLycopersicon esculentum, Glycine max, Phaseolus vulgaris, P. aureus, P. coccineus, Pisum sativum, Sinapis alba, Hordeum vulgare,
Triticum aestivum andZea mays. In these plant speciescab mRNA accumulation increases and decreases periodically indicating i) that the expression of the genes for chlorophyll a/b-binding
proteins (cab genes) is controlled by a circadian rhythm, and ii) that the rhythm is widely distributed among monocotyledonous and dicotyledonous
plant species. A detailed characterization of the pattern ofcab mRNA expression in tomato leaves shows that the amplitude of the oscillation is dependent on i) the developmental stage of
the leaves, ii) the circadian phase and duration of light and iii) the circadian phase and duration of darkness. In addition
to the chlorophyll a/b-binding proteins, genes coding for other cellular functions were examined for cyclic variations of
their mRNA levels. The analysis includes genes involved in i) carbon metabolism (e.g. phosphoenolpyruvate carboxylase, pyruvate
orthophosphate dikinase, alpha amylase, fructose-1,6-bisphosphate aldolase, triosephosphate isomerase), ii) photosynthesis
(large and small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, QB-binding protein, reaction-center protein of photosystem I) and iii) other physiological or morphological reactions (e.g.
ubiquitin, actin). However, no periodic fluctuation pattern was detected for the mRNA levels of these genes in tomato and
maize leaves. 相似文献
12.
The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein (LHCP) is investigated in wild-type barley (Hordeum vulgare L.) and in the chlorophyll b-less mutant chlorina f2. In dark-grown plants a short red light pulse triggers the appearance of mRNA activity for the LHCP. While the accumulation of this mRNA is controlled by phytochrome (Apel (1979) Eur. J. Biochem. 97, 183–188), the red light treatment is not sufficient to induce the appearance of the LHCP within the membrane. Thus, at least one of the subsequent steps in the biosynthetic pathway leading to the assembly of the LHCP is controlled by light. The red light-induced mRNA is taken up into the polysomes during the subsequent dark period and is translated in vitro in a cell-free protein synthesizing system. However, an accumulation of the freshly synthesized polypeptide within the plant is not observed. The apparent instability of the polypeptide might be explained by the deficiency of chlorophyll in the red light-treated plants. In the chlorophyll b-less barley mutant chlorina f2 an accumulation of the freshly synthesized apoprotein of the LHCP can be observed in the light. Thus, chlorophyll a formation seems to be a light-dependent step which is required for the stabilization of the LHCP.Abbreviations mRNA
messenger RNA
- EDTA
ethylenediaminetetraacetic acid
- SDS
sodium dodecylsulfate
- LHCP
light-harvesting chlorophyll a/b protein 相似文献
13.
Accompanying thylakoid membrane protein phosphorylation is a redistribution of energy between PS II and PS I; mechanistic aspects of this redistribution have been investigated in both a mature and a developing chloroplast system. Data are presented which suggest that the mechanism of these changes is dependent upon the developmental status and/or morphological characteristics of the chloroplast. 相似文献
14.
W. M. Chen N. Jin Y. Shi Y. Q. Su B. J. Fei W. Li D. R. Qiao Y. Cao 《Photosynthetica》2010,48(3):355-360
As a stress factor, salt induces the phosphorylation of light-harvesting chlorophyll (Chl) a/b proteins (LHCII) in Dunaliella salina. In this study, we found that the salt-induced phosphorylation of LHCII was not affected by phosphatase, and that salt simultaneously
regulated both the phosphorylation of LHCII and the expression of genes encoding light-harvesting Chl a/b proteins of photosystem II (lhcb) and the gene encoding Chl a oxygenase (cao) in dark-adapted D. salina. The mRNA accumulation patterns of lhcb and cao were similar, which further affected the size of LHCII and the ratio of Chl a to Chl b. Therefore, we inferred this simultaneous regulation is one of the mechanisms of D. salina to adapt to the high-salinity environment. 相似文献
15.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla
chlorophyll a
- chlb
chlorophyll b
- F0
fluorescence yield with reaction centers open
- Fm
fluorescence yield with reaction centres closed
- Fi
fluorescence at the plateau level of the fast induction phase
- LHC II
light-harvesting chlorophyll a/b protein complex II
- PS II
photosystem II
- PSI
photosystem I
- Tricine
N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine 相似文献
16.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I. 相似文献
17.
18.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll
protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS IIα and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS IIα centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS IIα component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS IIα contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll
ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS IIα and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS IIα and PS IIβ to the fluorescence induction kinetics. PS IIα characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP. 相似文献
19.
J.F. Allen 《FEBS letters》1984,166(2):237-244
Protein phosphorylation in isolated, intact pea chloroplasts was measured during the onset of CO2-dependent O2 evolution. Total incorporation of 32P (from 32Pi) into the light-harvesting chlorophyll a/b—protein was found to be less sensitive than O2 evolution to inhibition by the uncouplers FCCP and NH4C1 It is concluded that changes in the rate of ATP synthesis cannot affect protein phosphorylation without also affecting the rate of CO2-fixation in this system. The ATP/ADP ratio is therefore unlikely to regulate photosynthetic protein phosphorylation under normal physiology conditions. 相似文献
20.
This study investigated the regulation of major light harvesting chlorophyll a/b protein (LHCⅡ) phosphorylation by hypoosmotic shock in dark-adapted Dunaliella salina cells. When the external NaCI concentration decreased in darkness, D. salina LHCⅡ phosphorylation levels transiently dropped within 20 min and then restored gradually to basal levels. The transient decrease in LHCII phosphorylation levels was insensitive to NaF, a phosphatase inhibitor. Inhibition of intracellular ATP production by addition of an uncoupler or an ATP synthase inhibitor increased LHCⅡ phosphorylation levels in D. salina cells exposed to hypoosmotic shock. Taken together, these results indicate that hypoosmotic shock inhibits the LHCⅡ phosphorylation process. The related mechanism and physiological significance are discussed. 相似文献