首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Some physicochemical properties of a homogeneous preparation of a bifunctional enzyme, fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase, were determined. The molecular weight of the enzyme is 101 000 as determined by high-speed sedimentation equilibrium. The molecular weight of dissociated enzyme is 55 000 in 6 M guanidinium chloride by sedimentation equilibrium and in sodium dodecyl sulfate by polyacrylamide gel electrophoresis. A value of 4.7 was observed for the isoelectric point. Tryptic peptide maps and high-performance liquid chromatography of the trypsin-digested enzyme revealed approximately 60 peptides. Amino acid analysis of the enzyme shows that it contains 27 lysine and 36 arginine residues per 55 000 daltons. No free N-terminal amino acid residue was detectable, suggesting that it is blocked. Hydrolysis of the enzyme by carboxypeptidases A and B releases tyrosine followed by histidine and arginine, indicating that the amino acid sequence at the carboxyl terminus is probably -Arg-His-Tyr. Tryptic digestion of [32P]phosphofructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase yields a 32P-labeled peptide detected by tryptic peptide mapping and high-performance liquid chromatography. Thermolysin digestion of CNBr-cleaved 32P-enzyme also yields a single 32P-peptide. These results indicate that fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase is a dimer of 55 000 daltons and the subunits are very similar, if not identical.  相似文献   

4.
Fructose-6-P,2-kinase:fructose-2,6-bisphosphatase has been purified to homogeneity from beef heart. The enzyme was bifunctional and the specific activities of the kinase and the phosphatase of the pure enzyme were 60 and 30 milliunits/mg, respectively. The molecular weight of the enzyme was 118,000, consisting of two subunits of 58,000. In some preparations of the enzyme a minor protein with a subunit Mr of 54,000 was present. This minor protein (54,000) was also bifunctional and showed the same immunoreactivity as the major protein. The specific activity of fructose-6-P,2-kinase of the minor component was three times higher than that of the major enzyme (58,000), but fructose-2,6-bisphosphatase activity was the same. These two forms have been separated by phosphocellulose chromatography. The tryptic peptide maps of these enzymes were very similar. The 58,000 enzyme was phosphorylated by cAMP-dependent protein kinase but the 54,000 enzyme was not. These results indicated that the minor 54,000 protein might be a proteolytically digested form of the 58,000 enzyme. The Km of the kinase for fructose-6-P and ATP was 70 microM and 260 microM, respectively for both the 58,000 and the 54,000 enzymes. Km for fructose-2,6-P2 and Ki for fructose-6-P of the phosphatase was approximately 40 and 11 microM, respectively. The enzyme was phosphorylated by fructose-2,6-P2 but the stoichiometry of the phosphate incorporation was 0.05 mol/mol subunit, while 0.4 mol/mol was incorporated in rat liver enzyme under the same conditions.  相似文献   

5.
Yeast phosphofructokinase binds one molecule of fructose-6-phosphate per subunit. The binding curve exhibits sigmoidality and yields a good fit to an equation derived from the kinetic model as developed previously for this enzyme. The results show that the allosteric kinetic response of the enzyme to fructose-6-phosphate is due to cooperativity of the binding process.  相似文献   

6.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme in hexosamine synthesis and has been implicated in the control of growth factor gene expression. We cloned a mouse cDNA which is 91% homologous to the human sequence. The deduced amino-acid sequence shows 98.6% identity to human GFAT. The cDNA is derived from a 7-kb mRNA in the mouse, while there are multiple-sized human mRNAs.  相似文献   

7.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the first step in the biosynthesis of amino sugars by transferring the amino group from l-glutamine to the acceptor substrate, fructose 6-phosphate, generating the products glucosamine 6-phosphate and glutamic acid. We describe a method for the synthesis and purification of the substrate, fructose 6-phosphate, and methods for a radiometric assay of human GFAT1 that can be performed in either of two formats: a small disposable-column format and a high-throughput 96-well-plate format. The method performed in the column format can detect 1 pmol of glucosamine 6-phosphate, much less than that required by previously published assays that measure GlcN 6-phosphate. The column assay demonstrates a broad linear range with low variability. In both formats, the assay is linear with time and enzyme concentration and is highly reproducible. This method greatly improves the sensitivity and speed with which GFAT1 activity can be measured and facilitates direct kinetic measurement of the transferase activity.  相似文献   

8.
The isomerase activity of the C-terminal fructose-6P binding domain (residues 241-608) of glucosamine-6-phosphate synthase from Escherichia coli has been studied. The equilibrium constant of the C-terminal domain k(eq) ([glucose-6P]/[fructose-6-P]) = 5.0. A non-competitive product inhibition of the isomerase activity by the reaction product glucose-6-P has been detected. The existence of more than one binding and reaction sites for the substrate fructose-6P on the molecule of glucosamine-6-phosphate synthase can be expected. The fructose-6P binding domain possibly includes a regulatory site, different from the catalytic center of the enzyme.  相似文献   

9.
10.
Fructose-6-P binding sites of rat liver and bovine heart Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated with an affinity labeling reagent, N-bromoacetylethanolamine phosphate. The rat liver enzyme was inactivated 97% by the reagent in 60 min, and the rate of inactivation followed pseudo-first order kinetics. The bovine heart enzyme was inactivated 90% within 60 min, but the inactivation rate followed pseudo-first order up to 80% inactivation and then became nonlinear. The presence of fructose-6-P retarded the extent of the inactivation to approximately 40% in 60 min. In order to determine the amino acid sequence of the fructose-6-P binding site, both enzymes were reacted with N-bromo[14C]acetylethanolamine-P and digested with trypsin; radiolabeled tryptic peptides were isolated and sequenced. A single 14C-labeled peptide was isolated from the rat liver enzyme, and the amino acid sequence of the peptide was determined as Lys-Gln-Cys-Ala-Leu-Ala-Leu-Lys. A major and two minor peptides were isolated from bovine heart enzyme whose amino acid sequences were Lys-Gln-Cys-Ala-Leu-Val-Ala-Leu-Lys, Arg-Ile-Glu-Cys-Tyr-Lys, and Ile-Glu-Cys-Tyr-Lys, respectively. In all cases, N-bromoacetylethanolamine-P had alkylated the cysteine residues. The amount of bromo[14C]acetylethanolamine-P incorporated into rat liver and beef heart was 1.3 mol/mol of subunit and 2.1 mol/mol of subunit, respectively, and the incorporations in the presence of Fru-6-P were reduced to 0.34 mol/mol of subunit and 0.9 mol/mol of subunit, respectively. Thus, the main fructose-6-P binding site of rat liver and bovine heart enzymes was identical except for a single amino acid substitution of valine for alanine in the latter enzyme. This peptide corresponded to residues 105 to 113 from the N terminus of the known amino acid sequence of rat liver enzyme, but since the complete sequence of bovine heart enzyme is not known, the location of the same peptide in the heart enzyme cannot be assigned.  相似文献   

11.
Fructose-6-phosphate phosphoketolase was purified from type strains of two species of the genus Bifidobacterium: B. globosum and B. dentium. The first species has a preferred animal habitat, like feces of animals and rumen of cattle; the latter is harboured in human habitats, like feces and dental caries of man. Two electrophoretic types of phosphoketolase (F6PPK) were previously distinguished and called animal and human type according to the habitat of the bifid organism. The purified preparations of these two phosphoketolases displayed very different optimum pH range, metal activator and molecular weight; outstanding difference was found in the substrate specificity: the enzyme from B. globosum was able to split xylulose-5-P as well as fructose-6-P, whereas the phosphoketolase from B. dentium appeared to be specific for fructose-6-P.  相似文献   

12.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

13.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

14.
Two Bifidobacterium strains with acquired resistance to bile were used in this study. Significant differences on membrane-associated protein profiles were found between the bile resistant derivatives and their corresponding original strains. One of the major species detected in one of the resistant derivatives had an apparent denatured molecular mass of approximately 90 kDa, and was identified as xylulose-5-phosphate/fructose-6-phosphate phosphoketolase, the key enzyme of Bifidobacterium carbohydrate catabolism. Phosphoketolase activity was considerably higher in membrane preparations and cell-free extracts of the two bile resistant derivatives. This correlated to a greater consumption rate of glucose in resistant strains. Fructose-6-phosphate phosphoketolase activity in the strain Bifidobacterium bifidum CECT4549 and its resistant derivative was found to be partially associated with the cytoplasmic membrane through weak interactions.  相似文献   

15.
A seven fold increase in the rate of respiratory O2 uptake was observed 24 h after slicing of potato tuber disks. The maximum activity of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was 5-7 times greater than that of ATP-dependent phosphofructokinase (PFK) in fresh or aged potato slices. Thus, PFP may participate in glycolysis which supplies respiratory substrate in potato tubers. The PFP activity of desalted extracts determined in the absence of fructose-2,6-bisphosphate (F2,6BP) increased by 4.5 fold 24 h after slicing. However, maximal PFP activity determined with saturating (1 microM) F2,6BP was not changed. The Ka values of PFP for F2,6BP was lowered from 33 to 7 nM after 24 h of aging treatment. This increased susceptibility of the PFP activity to its allosteric activator, F2,6BP, may be involved in the increased respiration in wounded disks of potato tubers. Immunoblotting experiments indicated that both the alpha (66 kDa) and the beta (60 kDa) subunits of PFP were present in fresh or 24 h aged tuber slices.  相似文献   

16.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) from potato tubers has been purified to homogeneity. The enzyme contains two polypeptides with apparent relative molecular mass (Mr) values of 65,000 and 60,000. These polypeptides give different peptide fragments after limited proteolytic digestion. Antibodies raised against each polypeptide separately are specific for that polypeptide, but both antisera are capable of immunoprecipitating native PFP activity. These antibodies also recognize similar pairs of polypeptides in a range of other plant tissues that contain PFP activity. Based on gel filtration, the Mr value of potato tuber PFP is 265,000. This suggests that the enzyme is a heterotetramer composed of two polypeptides with Mr values of 65,000 and 60,000. In the presence of pyrophosphate, potato PFP dissociates into a 130,000 dimer.  相似文献   

17.
18.
Fructose-2,6-bisphosphate concentration and fructose-6-phosphate,2-kinase activity were measured in yeast cells grown aerobically or anaerobically using glucose as a carbon source. A new improved analytical method using HPLC was employed to measure fructose-2,6-P2 concentration. Anaerobically-grown yeast cells contain approximately 4-fold higher levels of fructose-2,6-P2 as compared to aerobically-grown cells in the growth phase of culture. Similarly, fructose-6-P,2-kinase activity is approximately 7-fold higher in the anaerobically-grown cells. These results suggest that the presence of oxygen in the growth medium decreases the content of fructose-2,6-P2 through inactivation of fructose-6-P,2-kinase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号