首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adrenalectomy on the formation of cyclo-oxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined and compared with that of the spleen. After isolation, the cells and tissues were incubated with [1-14C] arachidonic acid and the Ca-ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the macrophages of the controls are 6-keto-PGF1 alpha, TxB2 and 12-HETE. One peak represents 5, 12 di HETE. Smaller amounts of PGF2 alpha, PGE2, PGD2, LTB4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of LTB4, 15-HETE and 12-HETE. The increase in the PG is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, the formation of LTB4 is considerably increased after adrenalectomy. In the spleen, PGD2 and 12-HETE are decreased after adrenalectomy. The effect of the macrophages is most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid induced peptide with PlA2 inhibitory activity in adrenalectomized animals. In the decrease in formation in the spleen, the absence of the permissive effect of glucocorticosteroids on the hormone-induced lipolysis may play a role.  相似文献   

2.
In rat alveolar macrophages treated with 100 microM t-butyl hydroperoxide (tBOOH), leukotriene B4 (LTB4) synthesis was significantly lower than the basal level while levels of cyclooxygenase pathway products were increased. LTB4, 5,6-dihydroxyeicosatetraenoic acid (5,6-DiHETEs), and 5-hydroxyeicosatetraenoic acid (5-HETE) production in macrophages was significantly stimulated by 2 microM A23187, but this was suppressed 40% by simultaneous addition of 10 microM tBOOH and completely abolished by 100 microM tBOOH. Basal and A23187-stimulated macrophage production of chemotactic agents were similarly suppressed by addition of tBOOH; this effect paralleled depression of cellular LTB4 synthesis. In contrast to the significant depression of A23187-stimulated formation of 5-lipoxygenase products by 10 microM tBOOH, cellular adenosine triphosphate (ATP) was unchanged. Macrophages pretreated with KCN led to a 42% decline in ATP levels; however, LTB4, 5,6-DiHETEs, and 5-HETE production in response to A23187 was not suppressed. The results indicate that inhibition of 5-lipoxygenase pathway products in macrophages treated with tBOOH did not occur by depletion of cellular ATP levels.  相似文献   

3.
The effect of adrenalectomy on the formation of cyclooxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined. After isolation, the cells were incubated with [1-14C]arachidonic acid and the calcium ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the controls are 6-keto-prostaglandin F1 alpha, thromboxane B2 and 12-HETE. One peak represents 5,12-di-HETE. Smaller amounts of prostaglandin F2 alpha, prostaglandin E2, prostaglandin D2, leukotriene B4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of leukotriene B4, 15-HETE and 12-HETE. The increase in the prostaglandins is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, 6-keto-prostaglandin F1 alpha and thromboxane B2 are produced in higher amounts than leukotriene B4. After adrenalectomy, the formation of leukotriene B4 is much more increased than that of 6-keto-prostaglandin F1 alpha. These effects are most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid-induced peptide with phospholipase A2 inhibitory activity in adrenalectomized animals.  相似文献   

4.
In macrophages, isolated from the peritoneal fluid of rats, after activation, formation of metabolites of arachidonic acid occurs both by the cyclooxygenase and lipoxygenase pathways. The cells of normal animals produce mainly cyclooxygenase products. After adrenalectomy, a considerable increase occurs in the formation of lipoxygenase products, and less in those of the cyclooxygenase (1). In the experiments described here, the effect of adrenalectomy on the presence of leukotriene B4 (LTB4), 6-keto-PGF1 alpha and thromboxane B2 (TxB2) in the peritoneal fluid is determined.  相似文献   

5.
Pieces of tumor tissue were implanted subcutaneously in the right flank of BN female rats. After 3, 7, 10, 12, 14 and 17 days the lungs were lavaged and the alveolar macrophages collected. The cells were activated with the calcium ionophore A23187 and the formation of thromboxane B2 (TxB2), leukotriene B4 (LTB4) and 12-hydroxyeicosatetraenoic acid (12-HETE) determined. The formation of TxB2 decreased considerably until day 7. Thereafter, no changes occurred. The formation of LTB4 increased after the tumor implantation until day 10 and remained stable for the rest of the period, 12-HETE formation was approximately similar, with a decrease at day 12 but continued to increase after day 14. These results suggest that during tumor growth an inhibition of the cyclo-oxygenase or thromboxane synthase occurs and an activation of the C5- and C12-lipoxygenases of the alveolar macrophages.  相似文献   

6.
The aim of this study was to investigate to what extent the generation of leukotrienes (LTs) and lipoxins (LXs) was affected by the expression of definite levels of macrophage activation. We used a system of murine peritoneal macrophages at different states of activation consisting in resident macrophages and FCS-, thioglycollate- or Corynebacterium parvum-elicited macrophages. The profile of lipoxygenase metabolites in resident macrophages was characterized by the presence of high levels of 12-HETE, followed by 15-HETE, 5-HETE, LTB(4) and 6-trans-LTB(4), 6-trans-12-epi-LTB(4). A comparable pattern was also found in FCS-elicited macrophages which appeared not to be responsive to the challenge with interferon gamma plus LPS, as measured by the generation of NO and tumor necrosis factor alpha. Resident as well as FCS-elicited macrophages also generated appreciable quantities of LXs (A(4) and B(4)). Thioglycollate-elicited macrophages, which expressed a state of 'responsive' macrophages, showed a block of the LT and LX synthesis. This block was also present in C. parvum-elicited macrophages which expressed a fully 'activated' phenotype, reflected by their capacity of releasing NO and tumor necrosis factor alpha even though they were not challenged. These results provide the first evidence that the level of 'responsive' as well as 'activated' macrophages was associated with of a simultaneous block of LTB(4) and LXs.  相似文献   

7.
Escherichia coli hemolysin (HlyA) is a prototype of a large family of pore-forming proteinaceous exotoxins that have been implicated in the pathogenetic sequelae of severe infection and sepsis, including development of acute lung injury. In the present study in rabbit alveolar macrophages (AMs), subcytolytic concentrations of purified HlyA evoked rapid synthesis of platelet-activating factor, with quantities approaching those in response to maximum calcium ionophore challenge. In parallel, large quantities of leukotriene (LT) B(4) and 5-, 8-, 9-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) were liberated from HlyA-exposed AMs depending on exogenous arachidonic acid (AA) supply. Coadministration of eicosapentaenoic acid (EPA) dose dependently suppressed generation of the proinflammatory lipoxygenase products LTB(4) and 5-, 8-, 9-, and 12-HETE in parallel with the appearance of the corresponding EPA-derived metabolites LTB(5) and 5-, 8-, 9-, and 12-hydroxyeicosapentaenoic acid (HEPE). At equimolar concentrations, EPA turned out to be the preferred substrate over AA for these AM lipoxygenase pathways, with the sum of LTB(5) and 5-, 8-, 9-, and 12-HEPE surpassing the sum of LTB(4) and 5-, 8-, 9-, and 12-HETE by >80-fold. In contrast, coadminstration of EPA did not significantly reduce HlyA-elicited generation of the anti-inflammatory AA lipoxygenase product 15-HETE. We conclude that AMs are sensitive target cells for HlyA attack, resulting in marked proinflammatory lipid mediator synthesis. In the presence of EPA, lipoxygenase product formation is shifted from a pro- to an anti-inflammatory profile.  相似文献   

8.
The products derived from the metabolism of 12-hydroxyeicosatetraenoic acid (12-HETE) by mouse peritoneal macrophages were characterized by high performance liquid chromatography (HPLC) and GC-mass spectrometry. HPLC analysis demonstrated two predominant polar products and several minor ones. The proportion and amounts of these products were dependent on the concentration of 12-HETE, the number of macrophages incubated with the monohydroxy fatty acid, and the time of incubation. The products identified by GC-mass spectrometry suggested that 12-HETE had undergone beta-oxidation. The intermediates identified were: 3,12-dihydroxy-5,8,10,14, 20:4; 10-hydroxy-3,6,8,12, 18:4; 3,10-dihydroxy-6,8,12, 18:3; 8-hydroxy-4,6,10, 16:3; 6-hydroxy-4,8, 14:2; and 4-hydroxy, 12:1. The major products, as identified by HPLC and GC-mass spectrometry, were 8-hydroxy-4,6,10, 16:3 and 4-hydroxy, 12:1. A minor product, 10-hydroxy-6,8,12, 18:3 was postulated to arise from either the isomerization and reduction of 10-hydroxy-3,6,8,12, 18:4 or from chain elongation of 8-hydroxy-4,6,10, 16:3. Inhibiting cyclooxygenase and lipoxygenase activities by ibuprofen and nordihydroguaiaretic acid, respectively, did not inhibit the formation of these products. 82% to 98% of 12-HETE was converted and released into the medium as products of beta-oxidation. The remainder was taken up into cellular lipids. beta-Oxidation of 12-HETE was decreased by only 12 and 21% after inhibiting mitochondrial fatty acid oxidation by 89 and 93% by 5 and 100 microM concentrations of the mitochondrial fatty acid oxidation inhibitor, methyl palmoxirate, respectively. It is thus postulated that the beta-oxidation of 12-HETE by mouse peritoneal macrophages occurs in peroxisomes.  相似文献   

9.
The metabolism of 12-hydroxyeicosatetraenoic acid (12-HETE) was investigated in mouse peritoneal macrophages enriched in cholesterol by incubation with acetylated low density lipoproteins. After incubating with labeled arachidonic acid, cholesterol-rich cells released more 12-HETE into the medium than unmodified macrophages. With time, however, 12-HETE decreased in the medium of both cell preparations suggesting re-uptake of this monohydroxyfatty acid and perhaps further metabolism. When control macrophages were incubated with radiolabeled 12-HETE for 2 hr, almost 70% of the cell-associated 12-HETE label was incorporated into phospholipids. In contrast, in cholesterol-rich cells, only 31% of the 12-HETE label was incorporated into phospholipids. Bee venom phospholipase completely hydrolyzed the label, suggesting that the monohydroxyfatty acid was esterified at the sn-2 position of the phospholipid. In cholesterol-rich cells, 69% of the 12-HETE was diverted into neutral lipids. Two major neutral lipids were identified in cholesterol-rich macrophages. One neutral lipid band which migrated with an Rf value of 0.34 contained the hydroxylated fatty acid esterified to a glyceride. The other neutral lipid band having an Rf value of 0.49 contained cholesterol and by further analysis was found to contain predominantly cholesteryl-12-HETE. The labeled fatty acids in these two neutral lipids were mostly oxidized products of 12-HETE in contrast to the native 12-HETE observed in the phospholipids. Cholesterol-rich macrophages released 25% more products of 12-HETE metabolism than control macrophages. Two major products were observed in the medium which eluted in the area of a standard di-HETE, LTB4, on high performance liquid chromatography (HPLC) analysis. We propose that the reincorporation of 12-HETE into these neutral lipids and the increased capacity for further metabolism of this biologically potent hydroxyfatty acid could be a mechanism by which the cholesterol-rich macrophage maintains its membrane function, and regulates the amount of 12-HETE in the pericellular space.  相似文献   

10.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

11.
We compared lipoxygenase activities of lung macrophages obtained from bronchoalveolar lavage to activities of blood monocytes purified by using discontinuous plasma/Percoll density gradients and adherence to tissue culture plastic in five normal subjects. Cells were incubated with ionophore A23187 (10(-9) to 10(-5) M) or arachidonic acid (0.12 to 80 microM) for 1 to 60 min at 37 degrees C to construct dose-response and time-dependence curves of lipoxygenase product generation. Products were identified and were quantified by using high-pressure liquid chromatography and ultraviolet spectroscopy. Under all conditions of product generation, both macrophages and monocytes generated predominantly (5S,12R)-dihydroxy-(6Z, 8E, 10E, 14Z)-eicosatetraenoic acid (leukotriene B4 (LTB4] and (5S)-hydroxy-(6E, 8Z, 11Z, 14Z) - eicosatetraenoic acid (5 - HETE), but, in each subject, macrophages invariably released greater amounts of LTB4 and 5-HETE than monocytes. In response to A23187, macrophages released a maximum of 183 +/- 96 pmol of LTB4 and 168 +/- 108 pmol of 5-HETE per 10(6) cells (mean +/- SEM), whereas monocytes released only 16 +/- 1 and 18 +/- 8 pmol per 10(6) cells of LTB4 and 5-HETE, respectively. After adding arachidonic acid, macrophages released a maximum of 52 +/- 21 pmol of LTB4 and 223 +/- 66 pmol of 5-HETE, whereas monocytes released no detectable products. The results suggest that mononuclear phagocyte maturation in the lung may be accompanied by an enhanced ability to generate 5-lipoxygenase products.  相似文献   

12.
Biosynthesis of LTB(4) during cell-cell interaction between vascular smooth muscle cells (SMC) and alveolar macrophages (AM) has been investigated by use of both high-pressure Hquid chromatography (HPLC) and radtoimmunoassay (RIA). Both interleukin-beta (IL-beta) and tumour necrosis factor-alpha (TNFalpha) induced a time- and dose-dependent synthesis of 15-, and 5-hydroxyeicosatetraenoic acids (HETEs) from cultured SMC. However, neither TNFalpha nor IL-1beta induced a significant LTB(4) production in SMC alone or AM alone after 24 h of incubation. Addition of IL-1beta and TNFalpha simultaneously to SMC resulted in a dose-dependent synergistic increase of HETEs. Macrophages dose-dependently transformed extremely low concentrations of exogenous LTA(4) into LTB(4). Incubation of vascular SMC with various numbers of AM in the presence of IL-1beta (5 units/ml) and TNFalpha (10 units/ml) induced a great increase of LTB(4) synthesis in comparison with the detectable levels of LTB(4) produced by macrophages alone. Pretreatment of SMC with NDGA, cycloheximide, and actinomycin not only inhibited IL-1 and TNT induced HETEs synthesis but also abolished LTB(4) production when co-incubated with macrophages. These results suggest that LTB(4) in a mixture of SMC and macrophages could originate from a transcellular metabolism, i.e. macrophages transforming SMC-derived LTA(4) into LTB(4).  相似文献   

13.
The effect of adrenalectomy on the formation of cyclo-oxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined and compared with that of the spleen. After isolation, the cells and tissues were incubated with [1-14C] arachidonic acid and the Ca-ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the macrophages of the controls are 6-keto-PGF, TxB2 and 12-HETE. One peak represents 5, 12 di HETE. Smaller amounts of PGF, PGE2, PGD2, LTB4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of LTB4, 15-HETE and 12-HETE. The increase in the PG is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, the formation of LTB4 is considerably increased after adrenalectomy. In the spleen, PGD2 and 12-HETE are decreased after adrenalectomy.The effect of the macrophages is most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid induced peptide with PlA2 inhibitory activity in adrenalectomized animals. In the decrease in formation in the spleen, the absence of the permissive effect of glucocorticosteroids on the hormone-induced lipolysis may play a role.  相似文献   

14.
Leukotriene B4 (LTB4) is a potent chemotactic compound for neutrophils and is thought to be an important mediator of myocardial ischemia-reflow injury. We have measured LTB4 in rabbit cardiac tissue following ischemia-reflow using a sensitive and specific gas chromatographic-mass spectrometric (GC-MS) assay. The concentration of LTB4 in rabbit myocardium following 45 min ischemia and 3 h reflow was 48.7 +/- 12.5 pg/g, significantly higher than in non-ischemic tissue from the same animal (17.5 +/- 3.9 pg/g). These concentrations were at least an order of magnitude lower than previously reported values assessed by radioimmunoassay (RIA). Compared with the GC-MS method, RIA greatly overestimated LTB4 concentrations in cardiac tissue. The capacity of post-ischemic myocardium to produce lipoxygenase products, LTB4, 5-, 12- and 15-HETEs was also assessed following incubation of myocardium ex vivo with calcium ionophore. In all animals ischemic cardiac tissue produced greater amounts of LTB4, 5-, and 12-HETEs than non-ischemic myocardium and 12-HETE was the major product. Neutrophils that have accumulated in the injured tissue may be a major source of these products. However, in contrast to cardiac tissue, isolated rabbit neutrophils stimulated with A23187 produced 5-HETE as the major product with very little 12-HETE formed. These latter findings suggest that cells other than neutrophils may contribute to the production of lipoxygenase products during myocardial ischemia-reflow injury.  相似文献   

15.
The profile of cyclooxygenase and lipoxygenase products in normal rat colonic epithelium and subepithelium was examined. Colons were thoroughly perfused to eliminate contamination with blood. Two preparations of colonic epithelium were employed. The first consisted of intact colonic crypts and epithelial sheets. The second yielded single cell suspensions of superficial versus proliferative epithelial cells. Lipoxygenase product formation by colonic epithelium as measured by hydroxyeicosatetraenoic acid (HETE) and leukotriene B4 (LTB4) production (5-HETE greater than 12-HETE greater than 15-HETE greater than LTB4) accounted for 58% of the total colonic production of these moieties, whereas epithelium accounted for only 20% of total colonic protein. By contrast, prostaglandin (PG) E2 and PGF2 alpha production occurred predominantly (greater than 97%) in the subepithelial layers. The present studies also demonstrate markedly higher levels of accumulation of lipoxygenase products in proliferative versus superficial epithelial cells, whereas prostaglandin accumulation was greater in superficial cells. Previous studies have supported a role for lipoxygenase and cyclooxygenase products in the control of colonic secretion, inflammatory cell infiltration and proliferative activity. The present results raise the possibility that the striking differences in the sites of production of these products within the colon has functional implications.  相似文献   

16.
To determine changes in amniotic fluid (AF) lipoxygenase metabolites prior to spontaneous labor and after RU486 administration, we implanted AF and vascular catheters and myometrial electromyographic (EMG) electrodes in 8 rhesus macaques at 120-130 days of pregnancy (term = 167 days). Four animals had AF samples taken serially until they delivered their infants normally at term. The other four animals received RU486 (20 mg/kg/day) for 3 days. AF samples were collected every 2-3 days and at 12 hour intervals for 72 hours before and after treatment with RU486. Uterine activity was monitored continuously. LTB4, 5-HETE and 15-HETE were measured by radioimmunoassay. In untreated animals, LTB4 and 5-HETE concentrations in AF increased significantly (P less than 0.05) 4 days before delivery with no change in 15-HETE. After RU486, mean levels of LTB4 and 5-HETE were increased although the difference was not statistically significant. No change in 15-HETE levels was observed. In conclusion, LTB4 and 5-HETE increase in AF before the onset of spontaneous labor. Progesterone receptor blockade by RU486 does not reproduce the changes in AF lipoxygenase metabolites observed during normal parturition.  相似文献   

17.
We have investigated the inhibitory activity of compound MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-i ndol-2- yl]-2,2-dimethyl propanoic acid) on 5-lipoxygenase (5-LO) product synthesis in various human phagocytes stimulated with either the ionophore A23187, opsonized zymosan (OPZ), platelet-activating factor (PAF), or formyl-methionyl-leucyl-phenylalanine (fMLP). The lipoxygenase products were analyzed by reversed-phase HPLC. MK-0591 inhibited the formation of 5-hydroxyeicosatetraenoic acid, leukotriene (LT) B4, its omega-oxidation products, and 6-trans-isomers with IC50 values of 2.8-4.8 nM in A23187-stimulated neutrophils. In these conditions, arachidonic acid at a concentration of 10 microM had no effect on MK-0591 inhibitory activity. In neutrophils stimulated with OPZ, the synthesis of LTB4, its omega-oxidation products, and 6-trans-isomers was inhibited with IC50 values of 9.5-11.0 nM. MK-0591 inhibited 5-LO product synthesis in A23187-stimulated blood monocytes, eosinophils, and alveolar macrophages with IC50 values of 0.3-0.9, 3.7-5.3, and 8.5-17.3 nM, respectively. In neutrophils primed with granulocyte--macrophage colony-stimulating factor and stimulated with PAF, lipoxygenase product synthesis was inhibited with IC50 values of 7.7-8.7 nM. At the concentration of 1 microM, MK-0591 had no inhibitory effect on 15-lipoxygenase activity in human polymorphonuclear leukocytes, nor on human platelet 12-lipoxygenase and cyclooxygenase. In conclusion, MK-0591 is a very potent and specific inhibitor of 5-LO product synthesis in various types of human phagocytes.  相似文献   

18.
B lymphocytes convert arachidonic acid (AA) to the 5-lipoxygenase products leukotriene B4 (LTB4) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when subjected to oxidative stress. 5-HETE has little biological activity, but can be oxidized by a selective dehydrogenase in some cells to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent eosinophil chemoattractant. We found that CESS cells, a B lymphocyte cell line, convert AA to 5-oxo-ETE and this is selectively stimulated by oxidative stress. In the presence of H2O2, 5-oxo-ETE is a major AA metabolite in these cells (5-oxo-ETE≈5-HETE>LTB4). The cyclooxygenase product 12-hydroxy-5,8,10-heptadecatrienoic acid is also formed, but is not affected by H2O2. Diamide had effects similar to those of H2O2 and both substances had similar effects on human tonsillar B cells. H2O2 also stimulated 5-oxo-ETE formation from its direct precursor 5-HETE in tonsillar B and CESS cells, and this was inhibited by the glutathione reductase inhibitor carmustine. H2O2 concomitantly induced rapid increases in GSSG and NADP+ and reductions in GSH and NADPH. We conclude that oxidative stress stimulates 5-oxo-ETE synthesis in B lymphocytes by two mechanisms: activation of 5-lipoxygenase and increased oxidation of 5-HETE by NADP+-dependent 5-hydroxyeicosanoid dehydrogenase. B lymphocyte-derived 5-oxo-ETE could contribute to eosinophilic inflammation in asthma and other allergic diseases.  相似文献   

19.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

20.
Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号