首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.  相似文献   

2.
It was for the first time that complementation between the human and simian adenoviruses in human cells as well as the ability of the human adenovirus Ad2 (HADv2) genome to transform completely into the simian adenovirus SA7(C8) (SADv15) capsid (transcapsidation) was demonstrated. A defective adeno-adeno hybrid (recombinant) between the above viruses is described; the recombinant has the SA7(C8) capsid and Ad2 genome with a 10% insertion of SA7(C8) in the central region. Defective hybrid virions are able to replicate both in human and simian cells by using the SA7(C8) virus as helper. The hybrid virions help the above virus to replicate in human cells: they form a mutually complementing virion pair.  相似文献   

3.
Following joint replication of monkey SA7 adenovirus (C8 strain) and human adenovirus type 2 in green monkey kidney tissue culture, a virus possessing the properties of a hybrid was obtained. It was designated Ad2C8. Ad2C8 preparations contained two types of viral particles: human adenovirus type 2, and hybrid particles. The hybrid virions multiplied in green monkey kidney cells in the presence of human adenovirus types 1, 2, and 3, but not 3 and 7, and acquired the capsid of the helper adenovirus. The hybrid can serve as a helper for human adenoviruses. It can apparently induce T antigen of the C8 virus but, in contrast to the latter, does not induce tumors in hamsters.  相似文献   

4.
Gene organization of the transforming region of adenovirus type 7 DNA   总被引:8,自引:0,他引:8  
R Dijkema  B M Dekker  H van Ormondt 《Gene》1982,18(2):143-156
The sequence of the leftmost 11% of the weakly oncogenic human adenovirus type 7 (Ad7) DNA has been determined. This part of the Ad7 viral genome encompasses early region E1 which has been shown to be involved in the process of cell transformation in vitro (Dijkema et al., 1979). From the nucleotide sequence and determined coordinates of the E1 mRNAs, we are able to predict the primary structure of the polypeptides encoded by the transforming region of Ad7. The organization of the E1 region of Ad7 and of other adenovirus serotypes (Bos et al. 1981) leads to the proposal of a novel mechanism for gene regulation at the translational level in which protein synthesis can initiate at either the first or the second AUG triplet available in mRNA. The differences between the large E1b-specific tumor antigens of adenovirus types 12, 7 and 5 may explain the differences in oncogenicity of these viruses.  相似文献   

5.
6.
The E1A gene of highly oncogenic type 12 adenovirus (Ad12) possesses a segment unique to this serotype and comprising 60 base pairs contiguous with and separating conserved regions 2 and 3 in the gene. A similar but slightly longer segment is also present in the E1A gene of highly oncogenic simian adenovirus type 7 (D. Kimelman, J. S. Miller, D. Porter, and B. E. Roberts, J. Virol. 53:399-409, 1985). This segment is missing entirely from the E1A gene of type 5 adenovirus, which is nononcogenic. To test the hypothesis that this unique separating or "spacer" region influences the oncogenicity of Ad12, we constructed ClaI and SmaI restriction sites on either side of it, which allowed reciprocal exchange between this and the equivalent cassette from type 5 adenovirus E1A, bounded by the same restriction sites intrinsic to that gene. The resultant Ad12-based chimeric viruses, ch702 and ch704, in which the spacer region is replaced with (in-frame) type 5 sequence, grow normally on human A549 cells and display wild-type transformation frequencies on baby rat and mouse kidney cells. In contrast, the oncogenic capacity of these chimeric viruses, as measured by tumor induction following virus inoculation in Hooded Lister rats, is greatly reduced. Likewise, cells transformed by ch702 and ch704 display reduced tumorigenicity compared with wild-type transformants in syngeneic rats. These results, coupled with recent preliminary tests using a mutant with a point mutation in this region, support the view that the unique spacer region of type 12 is an oncogenic determinant of this virus.  相似文献   

7.
Block to multiplication of adenovirus serotype 2 in monkey cells.   总被引:46,自引:38,他引:8       下载免费PDF全文
The block to adenovirus 2 (Ad2) multiplication in monkey cells can be overcome by coinfection with simian virus 40 (SV40). To identify this block we have compared the synthesis of Ad2 proteins in monkey cells infected with Ad2 alone (unenhanced) or with Ad2 plus SV40 (enhanced). Synthesis of viral proteins in enhanced cells was virtually identical to that found for permissive infection of human cells by Ad2 alone. In contrast, the unenhanced cells were strikingly deficient in the production of the IV (fiber) and 11.5K proteins whereas the synthesis of 100K and IVa2 was normal. Synthesis of a number of other proteins such as II, V, and P-VII was partially reduced. A similar specific reduction in synthesis of these proteins was found when their messages were assayed by cell-free translation. This result suggests that the block to Ad2 protein synthesis is at the RNA level rather than with the translational machinery of monkey cells. Analysis of the complexity and the concentration of Ak2-specific RNAs, using hybridization of restriction endonuclease fragments of the Ad2 genome to increasing concentrations of RNA, shows that although all species of late Ad2 mRNA are present, the concentration of several species is reduced sevenfold or more in unenhanced monkey cells as compared with enhanced cells. These species come from regions of the genome known to encode the deficient proteins. A model for the failure of adenovirus to multiply in monkey cells, based on abnormal processing of specific adenovirus messages, is presented.  相似文献   

8.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

9.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

10.
We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected with the recombinant virus were shown to contain the Ad12-specific E1 proteins of 41 kilodaltons (E1a) and 19 and 54 kilodaltons (both encoded by E1b). The recombinant virus replicated efficiently in human embryonic kidney cells and HeLa cells, showing that the transforming regions of Ad5 and Ad12 had similar functions in productive infection. After the recombinant virus was injected into newborn hamsters, no tumors were produced during an observation period of 200 days. Thus, despite the fact that all products required for oncogenic transformation in vitro were derived from the highly oncogenic Ad12, the recombinant virus did not produce tumors in vivo. These data show that tumor induction by adenovirus virions is not determined only by the gene products of the transforming region.  相似文献   

11.
Malmgren, Richard A. (National Cancer Institute; Bethesda, Md.), Alan S. Rabson, Paula G. Carney, and Frances J. Paul. Immunofluorescence of green monkey kidney cells infected with adenovirus 12 and with adenovirus 12 plus simian virus 40. J. Bacteriol. 91:262-265. 1966.-Immunofluorescence studies of the viral antigens and tumor (T) antigens of adenovirus 12 and simian virus 40 (SV40) in green monkey kidney (GMK) cells infected with adenovirus 12 alone or in combination with the SV40 virus showed that the adenovirus 12 viral antigen was produced in detectable amounts only in the cells infected with both viruses. The adenovirus 12 T antigen, on the other hand, was formed in the GMK cells infected with the adenovirus 12 only. This antigen was formed as early as 18 hr after viral infection, and persisted for at least 48 hr after virus infection. There was a correlation between the appearance of the immunofluorescent T antigen in the nucleus and the electron microscope appearance of "nuclear stippling," which developed in the nuclei of GMK cells after infection with adenovirus 12 only, as well as after infection with both viruses.  相似文献   

12.
Formation of hybrids between viral deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) was used to detect virus-specific RNA in the nuclei and polyribosomes of transformed and tumor cells induced by "highly" oncogenic human adenovirus (Ad) types 12, 18, and 31. The presence of virus-specific RNA in the cell nucleus, and the inhibitory effect of actinomycin D on its synthesis, suggest that adenovirus-specific RNA is transcribed from a DNA template in the nucleus. Ad 12, 18, and 31 virus-specific RNA did not hybridize significantly with the DNA of the "weakly" oncogenic adenovirus group (Ad 3, 7, 11, 14, 16, and 21) or with that of nononcogenic Ad 2 and 4. Labeled RNA from Ad 12, 18, and 31 tumor cells hybridized with heterologous Ad 12, 18, and 31 DNA 30 to 60% as efficiently as with homologous DNA. Thus, common viral genes are transcribed in tumor cells induced by Ad 12, 18, and 31.  相似文献   

13.
Syrian hamster embryo cells transformed by adenovirus type 2 (Ad2) or simian virus 40 (SV40) differ markedly in morphology, tumorigenicity, and susceptibility to in vitro lysis by nonspecific cytotoxic cells. Hybrid cells formed by fusing Ad2- and SV40-transformed Syrian hamster embryo cells may express only SV40 T antigens or both SV40 and Ad2 T antigens. Hybrids that express only SV40 T antigens are indistinguishable from the nonhybrid SV40-transformed phenotype, whereas hybrid cells that express T antigens from both viruses closely resemble the nonhybrid parental Ad2-transformed phenotype. Because these hybrid cells have been useful in the study of neoplastic transformation, we determined the amount of viral antigens that they accumulate in an attempt to correlate the level of expression of the transforming viral genes with some of their phenotypic properties. Hybrid cells that expressed proteins from both viruses showed reduced levels of SV40 T antigens compared with those of hybrid cells that did not express Ad2 T antigens. We also found that the production of several cellular proteins that influence cytomorphology was inhibited in hybrid and nonhybrid cells that expressed Ad2 T antigens, and the repression of these cellular proteins correlated with a change in cytomorphology from fibroblastic to spherical. Finally, we showed that the susceptibility of our hybrid cells to in vitro lysis by natural killer cells and activated macrophages, two putative host-effector cells involved in defense against neoplasia, correlated closely with the level of expression of a 58,000-dalton Ad2 protein. The results reported here, together with the results of previous studies, indicate that the oncogenic potential of hybrid cells that express both Ad2 and SV40 antigens is extremely sensitive to Ad2 expression, whereas other phenotypic properties depend on Ad2 expression in a dose-dependent manner.  相似文献   

14.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

15.
Construction of an adenovirus type 7a E1A- vector.   总被引:2,自引:0,他引:2       下载免费PDF全文
A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector.  相似文献   

16.
Ad2++ HEY and Ad2++ LEY are two adenovirus 2(Ad2)-simian virus 40 (SV40) hybrids distinguished by differences in the efficiency with which they produce SV40 progeny in lytically infected African green monkey kidney cells. These virus populations are composed of nonhybrid Ad2 and hybrid virions, the majority of which contain more than 1 unit of SV40 DNA. The Ad2++ HEY and LEY populations also differ in their ability to induce SV40 transplantation immunity in rodents. Only Ad2++ HEY induces SV40 transplantation immunity in hamsters, whereas both viruses induce significant SV40 transplantation immunity in adult BALB/c mice.  相似文献   

17.
The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions.  相似文献   

18.
D F Klessig  T Grodzicker 《Cell》1979,17(4):957-966
Five host-range mutants (Ad2hr400–hr403, Ad5hr404) of human adenovirus serotype 2 and 5 (Ad2 and Ad5) which overcome the block to growth of wild-type adenovirus in monkey cells have been isolated. They form plaques and multiply efficiently in both monkey and human cells. The alteration in each of these mutants allows the full expression of all viral late genes, in marked contrast to the depressed synthesis of many late proteins in monkey cells infected with the parental Ad2 or Ad5. The altered gene encodes a diffusible product, since the mutation acts in trans to enhance the synthesis of wild-type Ad3 late proteins during co-infections of monkey cells with Ad2hr400 and Ad3. Restriction enzyme analysis of the genomes of all the host-range mutants show that none of them contain major alterations. In addition, an earlier report (Klessig and Hassell, 1978) indicated that Ad2hr400 does not contain SV40 sequences, which in some adenovirus-SV40 hybrid viruses allows efficient multiplication in monkey cells. The mutation responsible for the extended host range has been physically mapped by marker rescue experiments using isolated restriction enzyme fragments of the mutants to transfer the new phenotype to wild-type adenovirus. The alteration in each of the five mutants is located in a region (coordinates 62–70.7; coordinates 62–68 for Ad5hr404) which encodes predominantly the 72K DNA binding protein. More detailed mapping using Ad2hr400 fragments places the mutation (coordinates 62.9–65.6) entirely within the 72K gene. The multifunctional nature of the 72K protein and some of its similarities to SV40 T antigen are discussed.  相似文献   

19.
The Ad2++hey hybrid virus population produces simian virus 40 (SV40) efficiently during lytic infection, whereas Ad2++ley does not, although both hybrids contain a complete SV40 genome. In this report, we demonstrate the synthesis of nonhydrid SV40 DNA in Ad2++HEY-infected Vero cells, but only early SV40 RNA is transcribed efficiently in Ad2++LEY-infected cells. Ad2++HEY induces SV40 U, T, and V antigens during lytic infection of African green monkey kidney cells, whereas Ad2++LEY induces only SV40 U and T antigens. These variations in the behavior of Ad2++HEY and Ad2++LEY regarding expression of SV40 functions probably reflect differences in the rate of SV40 excision from the hybrid genomes.  相似文献   

20.
Two of the five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrids induce SV40 transplantation resistance in immunized hamsters. These two hybrids, Ad2(+)ND(2) and Ad2(+)ND(4), contain 32 and 43% of the SV40 genome, respectively. The pattern of induction of SV40 transplantation antigen (TSTA) by the various hybrids differentiates TSTA from both SV40 U and T antigens. Since the SV40 RNA induced by both these hybrids is early SV40 RNA, these findings confirm that TSTA is an early SV40 function. By combining available data on SV40 antigen induction by these hybrids with electron microscopy heteroduplex mapping studies, the DNA segment responsible for the induction of SV40 TSTA can be inferred to lie in the region between 0.17 and 0.43 SV40 units from the site on the SV40 chromosome cleaved by E. coli R(1) restriction endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号