首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The fate of plastid and mitochondrial nucleoids (pt and mt nucleoids) ofTriticum aestivum was followed during the reproductive organ formation using fluorescence microscopy after staining with 4'6-diamidino-2-phenylindole (DAPI). This investigation showed a drastic morphological change of pt nucleoids during the differentiation of reproductive organs from the shoot apex. Dot-shaped pt nucleoids grew into ring-shaped ones, which divided into small pieces in the monocellular pollen grain, as observed in this plant's earlier stage of leaf development. During the development of mature pollen grain from monocellular pollen grain, pt and/or mt nucleoids disappeared through the division of the male generative cell ofT. aestivum. Cytologically, this observation is direct evidence of the maternal inheritance of higher plants. Thus far, cytological evidence of this phenomenon has been found mostly by morphological criteria using electron microscopy, which admits some ambiguity. In the plants exemplified byLilium longiflorum, pt and/or mt nucleoids disappeared after the first pollen grain mitosis, which precededT. aestivum. In the plants exemplified byTrifolium repens, pt and/or mt nucleoids existed in the generative cells of the mature pollen grain.The significance of these observations was discussed in relation to the interaction between nuclear and organelle genomes during plant development.Abbreviations DAPI 4'6 diamidino-2-phenylindole - Mt DNA Mitochondrial DNA - Mt nucleoid Mitochondrial nucleoid - Pt DNA Plastid DNA - Pt nucleoid Plastid nucleoid On leave from Department of Biology, Nagoya University, Furocho, Chikusaku, Nagoya 464, Japan.  相似文献   

3.
Summary Dynamic change of plastid nucleoids (pt nucleoids) was followed by fluorescence microscopy after staining with 46-diamidino-2-phenyl indole (DAPI). The fluorescence image was quantified with a supersensitive photonic microscope system based on photon counting and image analysis. The results showed that small pt nucleoids located in the center of proplastids in the dry seed increased in size after imbibition and formed highly organized ring structures in the dark, which divided into ca. 10 pieces within 3 days. Corresponding to this morphological change, DNA content of a plastid multiplied 7.5 fold. Total increase in DNA content of pt nucleoids per cell was 34 times as that of dry seed, as plastid multiplied 4.6 times in the average during this period. Upon light illumination small pt nucleoids having basic genome size were separated from divided pt nucleoids, suggesting a relationship with the formation of thylakoid system. The significance of the procedure established in this study is discussed in analysing the dynamic changes of intracellular small genomes.On leave from Department of Biology, Faculty of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464, Japan.  相似文献   

4.
Summary Plastid nucleoids (pt nucleoids) were observed during pollen formation, or in generative cells of mature pollen grains using fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI). Nuclease C activity was surveyed using SDS-PAGE and agarose gel nuclease assay methods. InMirabilis jalapa, pt nucleoids were observed both in pollen mother cells and the monocellular pollen grains after meiosis, followed by the complete disappearance both in the generative and vegetative cells at the bicellular pollen grain stage. This observation is a direct evidence of maternal plastid inheritance. By contrast, in the generative cells of mature pollen grains fromRhododendron kaempferi, Zygocactus truncatus, Oenothera laciniata, andO. speciosa, pt nucleoids were clearly observed. Thus cytological evidence convinces the mode of biparental plastid inheritance. Nuclease C activity was clearly detected both in the stamen and pistil ofM. jalapa. InR. kaempferi low nuclease C activity was detected in both organs, but the activity in the stamen was much less than in the pistil. InZ. truncatus, O. laciniata, andO. speciosa, the activities were difficult to detect in both organs. These results suggest a significant role of nuclease C for the digestion of pt nucleoids in the generative cells.Abbreviations EGTA ethylene-glycol-bis-(2-aminoethyl ether)-N, N, N, N-tetraacetic acid - DAPI 4,6-diamidino-2-phenylindole - Nuclease C Ca2+ dependent nuclease - SDS-PAGE SDS-polyacrylamide gel electrophoresis - pt nucleoids plastid nucleoids  相似文献   

5.
Engineering the plastid genome of higher plants   总被引:14,自引:0,他引:14  
The plastid genome of higher plants is an attractive target for engineering because it provides readily obtainable high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs and gene containment through the lack of pollen transmission. A chloroplast-based expression system that is suitable for the commercial production of recombinant proteins in tobacco leaves has been developed recently. This expression system includes vectors, expression cassettes and site-specific recombinases for the selective elimination of marker genes. Progress in expressing proteins that are biomedically relevant, in engineering metabolic pathways, and in manipulating photosynthesis and agronomic traits is discussed, as are the problems of implementing the technology in crops.  相似文献   

6.
The amount of organellar DNA in a generative cell of Pharbitis nil was observed when squashed pollen grains collected on the day of flowering were stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole (DAPI). Using both DAPI-fluorescence microscopy and electron microscopy, observation of the same thin section of Technovit 7100 resin-embedded material revealed that all of the organellar DNA in mature generative cells is plastid DNA, and there is no mitochondrial DNA. During pollen development, we observed organellar DNA in fluorescence microscopic images using double-staining with DAPI and 3,3'-dihexyloxacarbocyanine iodide (DiOC6) and quantified the DNA using a video-intensified microscope photon counting system (VIMPCS). In the vegetative cells, the amounts of both mitochondrial and plastid DNA progressively decreased and had disappeared by 2 days before flowering. In the generative cells, mitochondrial DNA disappeared sooner than in the vegetative cells, indicating a more active mechanism for the decrease in mitochondrial DNA in the generative cells. In contrast, plastid DNA in the generative cells increased markedly. The DNA content per plastid was at a minimum value (corresponding to one copy of the plastid genome) 7 days before flowering, but it increased to a maximum value (corresponding to over 10 copies of the plastid genome) 2 days before flowering. Similar results were also obtained with immunogold electron microscopy using an anti-DNA antibody. These results suggest that the DNA content of mitochondria and plastids in P. nil is controlled independently during pollen development.  相似文献   

7.
In recent years there has been a considerable increase in our understanding of the manner by which light affects gene expression during chloroplast development. In most systems that have been studied, light acts through sensitive photoreceptor molecules and quantitatively increases or represses the level of expression of specific nuclear-and plastid-encoded genes. Although the mechanisms are obscure, a picture is beginning to emerge in which the coordination of nuclear and plastid gene expression is controlled by regulatory mechanisms originating within their respective subcellular compartments. This review summarizes some of our current knowledge concerning the nature of light-regulated gene expression in higher plants and provides a prospectus for future research in this area.  相似文献   

8.
Permeant cationic fluorescent probes are shown to be selectively accumulated by the mitochondria of living cells. Mitochondria-specific interaction of such molecules is apparently dependent on the high trans- membrane potential (inside negative) maintained by functional mitochondria. Dissipation of the mitochondrial trans-membrane and potential by ionophores or inhibitors of electron transport eliminates the selective mitochondrial association of these compounds. The application of such potential-dependent probes in conjunction with fluorescence microscopy allows the monitoring of mitochondrial membrane potential in individual living cells. Marked elevations in mitochondria- associated probe fluorescence have been observed in cells engaged in active movement. This approach to the analysis of mitochondrial membrane potential should be of value in future investigations of the control of energy metabolism and energy requirements of specific biological functions at the cellular level.  相似文献   

9.
A confocal fluorescence microscope was used to study the antigen receptor-mediated calcium signals in B cells. Anti-IgD binding to B lymphoma cells (BAL17) increased the intracellular calcium concentration with short lag times. Confocal fluorescence images of the fluo-3-loaded BAL17 cells showed that the intracellular calcium ion concentrations increased non-homogeneously, suggesting that the calcium signals transferred not only to the cytoplasm but also to the nucleus.  相似文献   

10.
11.
Summary Distribution of microtubules and other cytoskeletal filaments in growing skeletal muscle cells (myotubes) was studied in vitro by fluorescence microscopy using fluorescin-labeled antibodies and phalloidin, a specific antiactin drug. In the distal elongating tips of myotubes, microtubules were the major cytoskeletal elements; actin and intermediate filaments were much less abundant. On the other hand, colcemidand nocodozole-treatments caused disruption of microtubules and also prompt retraction of growth tips to form myosacs, a type of deformed myotube. Actin filaments remained unaffected during the retraction. The difference in the distribution of the 3 cytoskeletal filaments in the region of growth tips was most remarkable in the case of those myotubes in the process of recovery from myosacs. In an early phase of recovery, the cellular processes extending from myosacs were enriched with both microtubules and intermediate filaments, but not with actin filaments. Later, when the processes became further developed, intermediate filaments were scarce at the extreme ends. Fluorescein-labeled actin introduced by a micro-injection method was minimally incorporated into filaments in the cellular processes. We conclude that microtubules make up the cytoskeletal element which is most responsible for elongation or spreading of growth tips of myotubes in vitro.  相似文献   

12.
G. Lombardo  F. M. Gerola 《Planta》1968,82(1):105-110
Summary The ultrastructure of the generative cell of the pollen grain has been studied in two different plants: Mirabilis jalapa L., where variegation is transmitted only by the egg cell, and Pelargonium zonale Ait., where variegation can be transmitted also by the pollen grain. It was found that only in Pelargonium zonale Ait. does the male generative cell possesses a great number of proplastids.  相似文献   

13.
Zhang Q  Sodmergen 《Protoplasma》2003,221(3-4):211-216
Summary.  Following 4′,6-diamidino-2-phenylindole staining of mature pollen grains of Chlorophytum comosum, fluorescence microscopy confirmed that cytoplasmic nucleoids (DNA aggregates) were present in the generative cells, which indicated the possibility of biparental cytoplasmic inheritance. Electron and immuno-electron microscopy showed that both plastids and mitochondria were present in the generative cells, and both organelles contained DNA. These results indicate that mitochondria and plastids of C. comosum have the potential for biparental inheritance. Similar results were obtained with mature pollen grains of C. chinense. Therefore, we conclude the coincident biparental inheritance for mitochondria and plastids in the members of the genus Chlorophytum. Received June 28, 2002; accepted September 26, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: College of Life Science, Peking University, Bejing 100871, People's Republic of China.  相似文献   

14.
15.
16.
Summary The behavior of organelle nuclei during maturation of the male gametes ofLilium longiflorum andPelargonium zonale was examined by fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) and Southern hybridization. The organelle nuclei in both generative and vegetative cells inL. longiflorum were preferentially degraded during the maturation of the male gametes. In the mature pollen grains ofL. longiflorum, there were absolutely no organelle nuclei visible in the cytoplasm of the generative cells. In the vegetative cells, almost all the organelle nuclei were degraded. However, in contrast to the situation in generative cells, the last vestiges of organelle nuclei in vegetative cells did not disappear completely. They remained in evidence in the vegetative cells during germination of the pollen tubes. InP. zonale, however, no evidence of degradation of organelle nuclei was ever observed. As a result, a very large number of organelle nuclei remained in the sperm cells during maturation of the pollen grains. When the total DNA isolated from the pollen or pollen tubes was analyzed by Southern hybridization with a probe that contained therbc L gene, for detection of the plastid DNA and a probe that contained thecox I gene, for detection of the mitochondrial DNA, the same results were obtained. Therefore, the maternal inheritance of the organelle genes inL. longiflorum is caused by the degradation of the organelle DNA in the generative cells while the biparental inheritance of the organelle genes inP. zonale is the result of the preservation of the organelle DNA in the generative and sperm cells. To characterize the degradation of the organelle nuclei, nucleolytic activities in mature pollen were analyzed by an in situ assay on an SDS-DNA-gel after electrophoresis. The results revealed that a 40kDa Ca2+-dependent nuclease and a 23 kDa Zn2+ -dependent nuclease were present specifically among the pollen proteins ofL. longiflorum. By contrast, no nucleolytic activity was detected in a similar analysis of pollen proteins ofP. zonale.  相似文献   

17.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.   相似文献   

18.
Mitochondrial (mt) nucleoids were visualized in living cells in culture by staining with the fluorochrome picoGreen. The cell types included a line derived from Xenopus heart endothelial cells (XTH-2), 3T3 cells, SV40-transformed 3T3 cells and primary cultures of Xenopus tadpole epidermis cells. In the permanent cell lines 6-60% of the mitochondria were found to be devoid of DNA. The peaks of the frequency distribution of mtDNA content, as revealed by microfluorometry, were not very distinct, indicating the presence of a high amount of aneuploid mt nucleoids. The maximum size of nucleoids (as derived from fluorescence intensity) was 10-12 times that of the minimum peak value in proliferating cell cultures. A linear ratio was found between the volume of the nucleoids and their DNA content, which is interpreted as a uniform package density. In terminally differentiating tadpole epidermis cells mitochondria form large bodies containing giant nucleoids, while in mitotic cells the mt nucleoids are small and of uniform size. Fusion and fission of the nucleoids were observed to occur either for no visible reason or in connection with fusion and fission events of the mitochondria.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号