首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.  相似文献   

2.
The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately after Z-ring formation or concomitantly with it and that FtsA is responsible for recruiting the later-assembling membrane-bound division proteins to the division site. Here, we report the development of an in vivo chemical cross-linking assay to examine the association between FtsZ and FtsA in Bacillus subtilis cells. We subsequently use this assay in a synchronous cell cycle to show that these two proteins can interact prior to Z-ring formation. We further show that in a B. subtilis strain containing an ftsA deletion, FtsZ localized at regular intervals along the filament but the majority of Z rings were abnormal. FtsA in this organism is therefore critical for the efficient formation of functional Z rings. This is the first report of abnormal Z-ring formation resulting from the loss of a single septation protein. These results suggest that in this organism, and perhaps others, FtsA ensures recruitment of the membrane-bound division proteins by ensuring correct formation of the Z ring.  相似文献   

3.
The genetic factors responsible for the regulation of cell division in Mycobacterium tuberculosis are largely unknown. We showed that exposure of M. tuberculosis to DNA damaging agents, or to cephalexin, or growth of M. tuberculosis in macrophages increased cell length and sharply elevated the expression of Rv2719c, a LexA-controlled gene. Overexpression of Rv2719c in the absence of DNA damage or of antibiotic treatment also led to filamentation and reduction in viability both in broth and in macrophages indicating a correlation between Rv2719c levels and cell division. Overproduction of Rv2719c compromised midcell localization of FtsZ rings, but had no effect on the intracellular levels of FtsZ. In vitro, the Rv2719c protein did not interfere with the GTP-dependent polymerization activity of FtsZ indicating that the effects of Rv2719c on Z-ring assembly are indirect. Rv2719c protein exhibited mycobacterial murein hydrolase activity that was localized to the N-terminal 110 amino acids. Visualization of nascent peptidoglycan (PG) synthesis zones by probing with fluoresceinated vancomycin (Van-FL) and localization of green fluorescent protein-Rv2719c fusion suggested that the Rv2719c activity is targeted to potential PG synthesis zones. We propose that Rv2719c is a potential regulator of M. tuberculosis cell division and that its levels, and possibly activities, are modulated under a variety of growth conditions including growth in vivo and during DNA damage, so that the assembly of FtsZ-rings, and therefore the cell division, can proceed in a regulated manner.  相似文献   

4.
Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.  相似文献   

5.
Chloroplast division is initiated by assembly of a mid-chloroplast FtsZ (Z) ring comprising two cytoskeletal proteins, FtsZ1 and FtsZ2. The division-site regulators ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), MinD1, and MinE1 restrict division to the mid-plastid, but their roles are poorly understood. Using genetic analyses in Arabidopsis thaliana, we show that ARC3 mediates division-site placement by inhibiting Z-ring assembly, and MinD1 and MinE1 function through ARC3. ftsZ1 null mutants exhibited some mid-plastid FtsZ2 rings and constrictions, whereas neither constrictions nor FtsZ1 rings were observed in mutants lacking FtsZ2, suggesting FtsZ2 is the primary determinant of Z-ring assembly in vivo. arc3 ftsZ1 double mutants exhibited multiple parallel but no mid-plastid FtsZ2 rings, resembling the Z-ring phenotype in arc3 single mutants and showing that ARC3 affects positioning of FtsZ2 rings as well as Z rings. ARC3 overexpression in the wild type and ftsZ1 inhibited Z-ring and FtsZ2-ring assembly, respectively. Consistent with its effects in vivo, ARC3 interacted with FtsZ2 in two-hybrid assays and inhibited FtsZ2 assembly in a heterologous system. Our studies are consistent with a model wherein ARC3 directly inhibits Z-ring assembly in vivo primarily through interaction with FtsZ2 in heteropolymers and suggest that ARC3 activity is spatially regulated by MinD1 and MinE1 to permit Z-ring assembly at the mid-plastid.  相似文献   

6.
The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.  相似文献   

7.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

8.
The role(s) in cell division of the Mycobacterium tuberculosis Rv0011c gene product, a homolog of the Streptomyces CrgA protein that is responsible for coordinating growth and cytokinesis in sporogenic aerial hyphae, is largely unknown. We show that an enhanced cyan fluorescent protein-M. tuberculosis CrgA (ECFP-CrgA(MT)) fusion protein is localized to the cell membrane, midcell, and cell pole regions in Mycobacterium smegmatis. Furthermore, the ECFP-CrgA(MT) fusion protein colocalized with FtsZ-enhanced yellow fluorescent protein (EYFP) in M. smegmatis. Bacterial two-hybrid assays indicated strong interactions of M. tuberculosis CrgA with FtsZ, FtsQ, and the class B penicillin-binding proteins, FtsI (PBPB) and PBPA. The midcell localization of CrgA(MT) was severely compromised under conditions of FtsZ depletion, which indicated that CrgA localizes to the midcell region after assembly of the FtsZ ring. M. tuberculosis cells with reduced CrgA levels were elongated and grew more slowly than wild-type cells, which indicated defects in cell division, whereas CrgA overproduction did not show growth defects. A M. smegmatis ΔcrgA strain exhibited a bulged cell morphology, elongated cells with a chain-like phenotype, cells with polar bulbous structures, and a modest growth defect. FtsZ and FtsI levels were not affected in cells producing altered levels of CrgA. Septal and membrane localization of GFP-FtsI was enhanced by CrgA overproduction and was diminished in a ΔcrgA strain, which indicates that one role of CrgA is to promote and/or stabilize FtsI localization. Overall, these data indicate that CrgA is a novel member of the cell division complex in mycobacteria and possibly facilitates septum formation.  相似文献   

9.
The earliest event in bacterial cell division is the formation of a Z ring, composed of the tubulin-like FtsZ protein, at the division site at midcell. This ring then recruits several other division proteins and together they drive the formation of a division septum between two replicated chromosomes. Here we show that, in addition to forming a cytokinetic ring, FtsZ localizes in a helical-like pattern in vegetatively growing cells of Bacillus subtilis. FtsZ moves rapidly within this helix-like structure. Examination of FtsZ localization in individual live cells undergoing a single cell cycle suggests a new assembly mechanism for Z ring formation that involves a cell cycle-mediated multistep remodelling of FtsZ polymers. Our observations suggest that initially FtsZ localizes in a helical pattern, with movement of FtsZ within this structure occurring along the entire length of the cell. Next, movement of FtsZ in a helical-like pattern is restricted to a central region of the cell. Finally the FtsZ ring forms precisely at midcell. We further show that another division protein, FtsA, shown to interact with FtsZ prior to Z ring formation in B. subtilis, also localizes to similar helical patterns in vegetatively growing cells.  相似文献   

10.
During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.  相似文献   

11.
Cell division in Escherichia coli begins with the polymerization of FtsZ into a ring‐like structure, the Z‐ring, at midcell. All other division proteins are thought to require the Z‐ring for recruitment to the future division site. Here, it is reported that the Z‐ring associated proteins ZapA and ZapB form FtsZ‐independent structures at midcell. Upon Z‐ring disruption by the FtsZ polymerization antagonist SulA, ZapA remained at midcell as a cloud‐like accumulation. Using ZapA(N60Y), a variant defective for interaction with FtsZ, it was established that these ZapA structures form without a connection to the Z‐ring. Furthermore, midcell accumulations of GFP‐ZapA(N60Y) often preceded Z‐rings at midcell and required ZapB to assemble, suggesting that ZapB polymers form the foundation of these structures. In the absence of MatP, a DNA‐binding protein that links ZapB to the chromosomal terminus region, cloud‐like ZapA structures still formed but failed to track with the chromosome terminus and did not consistently precede FtsZ at midcell. Taken together, the results suggest that FtsZ‐independent structures of ZapA–ZapB provide additional positional cues for Z‐ring formation and may help coordinate its assembly with chromosome replication and segregation.  相似文献   

12.
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ‐binding protein, promotes Z‐ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled‐coil protein we named ZauP. ZapA and ZauP co‐localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z‐rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z‐ring through a bundling‐independent mechanism. The zauPzapA operon is present in diverse Gram‐negative bacteria, indicating a common mechanism for Z‐ring assembly.  相似文献   

13.
At initiation of cell division, FtsZ, a tubulin-like GTPase, assembles into a so-called Z-ring structure at the site of division. The formation of Z ring is negatively regulated by EzrA, which ensures only one ring at the midcell per cell cycle. The mechanism leading to the negative regulation of Z-ring formation by EzrA has been analyzed. Our data reveal that the interaction between EzrA and FtsZ not only reduces the GTP-binding ability of FtsZ but also accelerates the rate of GTP hydrolysis, both of which are unfavorable for the polymerization of FtsZ. Moreover, the acceleration in rate of GTP hydrolysis by EzrA is attributed to stabilization of the transition state for GTP hydrolysis and reduction in the affinity of GDP for FtsZ. Clearly, EzrA is able to modify the GTP hydrolysis cycle of FtsZ. On the basis of these results, a model for how EzrA acts to negatively regulate Z-ring formation is proposed.  相似文献   

14.
FtsZ assembly at the midcell division site in the form of a Z-ring is crucial for initiation of the cell division process in eubacteria. It is largely unknown how this process is regulated in the human pathogen Mycobacterium tuberculosis. Here we show that the expression of clpX was upregulated upon macrophage infection and exposure to cephalexin antibiotic, the conditions where FtsZ-ring assembly is delayed. Independently, we show using pull-down, solid-phase binding, bacterial two-hybrid and mycobacterial protein fragment complementation assays, that M. tuberculosis FtsZ interacts with ClpX, the substrate recognition domain of the ClpXP protease. Incubation of FtsZ with ClpX increased the critical concentration of GTP-dependent polymerization of FtsZ. Immunoblotting revealed that the intracellular ratio of ClpX to FtsZ in wild type M. tuberculosis is approximately 1∶2. Overproduction of ClpX increased cell length and modulated the localization of FtsZ at midcell sites; however, intracellular FtsZ levels were unaffected. A ClpX-CFP fusion protein localized to the cell poles and midcell sites and colocalized with the FtsZ-YFP protein. ClpX also interacted with FtsZ mutant proteins defective for binding to and hydrolyzing GTP and possibly for interactions with other proteins. Taken together, our results suggest that M. tuberculosis ClpX interacts stoichiometrically with FtsZ protomers, independent of its nucleotide-bound state and negatively regulates FtsZ activities, hence cell division.  相似文献   

15.
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates at the cytokinetic ring in an FtsZ-dependent manner, although its precise role at this position is not known. Here, we identified a conserved patch of amino acids in the EzrA C terminus that is essential for localization to the FtsZ ring. Mutations in this patch (designated the “QNR patch”) abolish EzrA localization to midcell but do not significantly affect EzrA's ability to inhibit FtsZ assembly at cell poles. ezrA QNR patch mutant cells exhibit stabilized FtsZ assembly at midcell and are significantly longer than wild-type cells, despite lacking extra FtsZ rings. These results indicate that EzrA has two distinct activities in vivo: (i) preventing aberrant FtsZ ring formation at cell poles through inhibition of de novo FtsZ assembly and (ii) maintaining proper FtsZ assembly dynamics within the medial FtsZ ring, thereby rendering it sensitive to the factors responsible for coordinating cell growth and cell division.  相似文献   

16.
In Escherichia coli the Z ring has the potential to assemble anywhere along the cell length but is restricted to midcell by the action of negative regulatory systems, including Min. In the current model for the Min system, the MinC/MinD division inhibitory complex is evenly distributed on the membrane and can disrupt Z rings anywhere in the cell; however, MinE spatially regulates MinC/MinD by restricting it to the cell poles, thus allowing Z ring formation at midcell. This model assumes that Z rings formed at different cellular locations have equal sensitivity to MinC/MinD in the absence of MinE. However, here we report evidence that differences in MinC/MinD sensitivity between polar and nonpolar Z rings exists even when there is no MinE. MinC/MinD at proper levels is able to block minicell production in Δmin strains without increasing the cell length, indicating that polar Z rings are preferentially blocked. In the FtsZ-I374V strain (which is resistant to MinC(C)/MinD), wild-type morphology can be easily achieved with MinC/MinD in the absence of MinE. We also show that MinC/MinD at proper levels can rescue the lethal phenotype of a min slmA double deletion mutant, which we think is due to the elimination of polar Z rings (or FtsZ structures), which frees up FtsZ molecules for assembly of Z rings at internal sites to rescue division and growth. Taken together, these data indicate that polar Z rings are more susceptible to MinC/MinD than internal Z rings, even when MinE is absent.  相似文献   

17.
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.  相似文献   

18.
19.
The tubulin homolog FtsZ forms a polymeric membrane-associated ring structure (Z ring) at midcell that establishes the site of division and provides an essential framework for the localization of a multiprotein molecular machine that promotes division in Escherichia coli. A number of regulatory proteins interact with FtsZ and modulate FtsZ assembly/disassembly processes, ensuring the spatiotemporal integrity of cytokinesis. The Z-associated proteins (ZapA, ZapB, and ZapC) belong to a group of FtsZ-regulatory proteins that exhibit functionally redundant roles in stabilizing FtsZ-ring assembly by binding and bundling polymeric FtsZ at midcell. In this study, we report the identification of ZapD (YacF) as a member of the E. coli midcell division machinery. Genetics and cell biological evidence indicate that ZapD requires FtsZ but not other downstream division proteins for localizing to midcell, where it promotes FtsZ-ring assembly via molecular mechanisms that overlap with ZapA. Biochemical evidence indicates that ZapD directly interacts with FtsZ and promotes bundling of FtsZ protofilaments. Similarly to ZapA, ZapB, and ZapC, ZapD is dispensable for division and therefore belongs to the growing group of FtsZ-associated proteins in E. coli that aid in the overall fitness of the division process.  相似文献   

20.
In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号