首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most gall insects use young developing plant organs for gall formation; however, little information is available on the histological identification of such tissues or the changes in their availability with plant growth. We investigated the oviposition site of and the tissue used for gall formation by the midge Asphondylia aucubae Yukawa and Ohsaki, which is responsible for galls on the fruit of Aucuba japonica Thunb., by comparing the internal structures of young developing fruit, mature intact (uninfested) fruit, and galled fruit. The midge deposited eggs between the integument and the carpel of young fruit. Larval chambers were made of callus‐like tissue and were formed between the embryo sac and the carpel, where the integument was initially situated. The integument and part of the carpel were thus identified as critical plant tissues used by A. aucubae in forming galls. The integument degenerates in mature intact fruit; therefore, the season of emergence and oviposition by the midge may be determined by the timing of integument degeneration.  相似文献   

2.
Density-dependent mortality has been considered a symptom of intraspecific competition. We examined the occurrence of such mortality in the early stages of gall induction by the gall midge Asphondylia aucubae Yukawa et Ohsaki (Diptera: Cecidomyiidae). Female midges deposit eggs into young fruit of the dioecious shrub Aucuba japonica Thunberg to induce gall formation. Each host fruit received 0–67 eggs (mean 18.5 eggs) from multiple females, whereas established galls each contained one to ten larvae. Midges suffered intense mortality (65–90%) at the egg stage. Egg mortality occurred even in fruit in which no larvae had hatched, suggesting that this mortality cannot be wholly attributed to larval interference. Egg mortality was affected by fruit size, i.e., resource capacity. Midges distributed more eggs in larger fruit. Egg mortality increased as the per-fruit density increased relative to fruit size. In contrast, the mortality of hatchlings was density-independent. Our results suggest that A. aucubae intensely compete for gall-induction substrates, which are spatiotemporally rare resources.  相似文献   

3.
The developmental anatomy and morphology of the ovule and seed in several species of Heliconia were investigated as part of an embryological study of the Heliconiaceae and to provide a better understanding of their relationships with the other families of the Zingiberales. Heliconia species have an ovule primordium with an outer integument of both dermal and subdermal origin. The archesporial cell is divided into a megasporocyte and a single parietal cell, which in turn are divided only anticlinally to form a single parietal layer, disintegrating later during gametogenesis. The embryo sac was fully developed prior to anthesis. In the developing seed, the endosperm was nuclear, with wall formation in the globular stage; a nucellar pad was observed during embryo development, but later became compressed. The ripe fruit contained seeds enveloped by a lignified endocarp that formed the pyrenes, with each pyrene having an operculum at the basal end; the embryo was considered to be differentiated. Most of these characteristics are shared with other Zingiberales, although the derivation of the operculum from the funicle and the formation of the main mechanical layer by the endocarp are unique to the Heliconiaceae.  相似文献   

4.
The population dynamics of the aucuba fruit midge,Asphondylia aucubae (Japanese name: Aokimitamabae), were studied for 3 yr mainly at a broad-leaved evergreen forest on Mt. Shiroyama in Kagoshima City. This species is univoltine and adults emerge in May. Eggs were laid randomly inside the immature fruit of the host plant,Aucuba japonica (Japanese name: Aoki). Healthy fruit fell by the following March, whereas galled fruit remained on the trees even after the emergence of adult midges. The survival rate from the egg to adult stage was estimated to be 24.2%, and the number of midges on five census trees increased gradually during the census period. Two important mortality factors were recognized, i.e., fall of incompletely galled fruit and damage of the galled fruit by feeding of caterpillars of a moth. Some unknown factors were also found to be important, operating in an inversely density-dependent manner. The gradual increase ofA. aucubae is considered to be caused by such inversely density-dependent mortality processes.  相似文献   

5.
The development of the ovule, fruit and seed of Xyris spp. was studied to assess the embryological characteristics of potential taxonomic usefulness. All of the studied species have (1) orthotropous, bitegmic and tenuinucellate ovules, with a micropyle formed by both the endostoma and exostoma; (2) a cuticle in the ovules and seeds between the nucellus/endosperm and the inner integument and between the inner and outer integuments; (3) helobial, starchy endosperm; (4) a reduced, campanulate and undifferentiated embryo; (5) a seed coat formed by a tanniferous endotegmen, endotesta with thick‐walled cells and exotesta with thin‐walled cells; and (6) a micropylar operculum formed from inner and outer integuments. The pericarp is composed of a mesocarp with cells containing starch grains and an endocarp and exocarp formed by cells with U‐shaped thickened walls. The studied species differ in the embryo sac development, which can be of the Polygonum or Allium type, and in the pericarp, which can have larger cells in either endocarp or exocarp. The Allium‐type embryo sac development was observed only in Xyris spp. within Xyridaceae. Xyris also differs from the other genera of Xyridaceae by the presence of orthotropous ovules and a seed coat formed by endotegmen, endotesta and exotesta, in agreement with the division of the family into Xyridoideae and Abolbodoideae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 619–628.  相似文献   

6.
Changes in larval density and movement behavior of a commensal midge, Nanocladius (Plecopteracoluthus) sp. #4, were monitored for 26 weeks in recirculating laboratory streams. Adults were captured at emergence, sexed, and weighed to assess the effect of larval density and movement behavior on emergence success and adult size. The density of midges on hosts declined with time and coincided with a springtime increase in larval movement frequency. Midges residing on hosts with high spring densities emerged significantly less than midges on hosts with low densities. Resident midge density on hosts did not influence the likelihood of successful colonization by commensals and colonizers showed no preference for initial attachment site on hosts. However, colonizing midges emerged significantly less than resident midges. Similarly, successful emergers changed tube positions significantly less often as larvae relative to non-emergers. There was no difference in adult body weight of resident midges and colonists/movers, but adult males which emerged from commensal-laden (high density) hosts were significantly smaller than males from low density hosts. These data indicate larval density and movement behavior may have strong fitness consequences for commensal midges.  相似文献   

7.
Histochemical analyses of the ovule of Quercus gambelii show that the major food reserves (starch grains and lipids) are located almost exclusively within the outer integument. Vascular traces are present only within this integument which contains numerous, well-developed plasmodesmata. The inner integument is virtually devoid of any food reserves and has very few plasmodesmata. The ovule has a persistent chalazal extension of residual nucellar cells (called the postament) which projects into the embryo sac. Due to the above information and the fact that the synergids rarely contain starch and no plasmodesmata are present in the walls of any of the cells of the egg apparatus (Mogensen, 1972), it is concluded that the synergids play little or no role in embryo sac nutrition. Rather, it is proposed that the pathway of available food materials in the young ovule is from the outer integument to the chalaza and through the postament into the embryo sac.  相似文献   

8.
? Premise of the study: Flower heating is known from a few species in 11 of the c. 450 families of flowering plants. Flowers in these families produce heat metabolically and are adapted to beetles or flies as pollinators. Here, we focus on the Schisandraceae, an American/Asian plant family known to exhibit flower heating in some species, but not others, raising the question of the adaptive function of heat production. ? Methods: We used field observations, experiments, and ancestral trait reconstruction on a molecular phylogeny for Schisandraceae that includes the investigated species. ? Key results: At least two Chinese species of Illicium are exclusively pollinated by gall midges that use the flowers as brood sites (not for pollen feeding). Continuous monitoring of flower temperatures revealed that the highest temperatures were attained after the flowers' sexual functions were over, and experiments showed that post-anthetic warming benefited larval development, not fruit development. Midge larvae in flowers with trimmed tepals (and hence a lower temperature) died, but fruit set ratios remained unchanged. Based on the DNA phylogeny, gall midge pollination evolved from general fly/beetle pollination several times in Schisandraceae, with some species adapted to flower-breeding midges, others to pollen-feeding midges. ? Conclusions: Flower heating may be an ancestral trait in Schisandraceae that became co-opted in species pollinated by flower-breeding midges requiring long-persistent warm chambers for larval development.  相似文献   

9.
Plants are prone to attack by a great diversity of antagonists against which they deploy various defence mechanisms, of which the two principle ones are mechanical and chemical defences. These defences are hypothesized to be negatively correlated due to either functional redundancy or a trade-off, i.e., plants which rely on increased mechanical defence should downregulate their degree of chemical defence and vice versa. A competing hypothesis is that different defences perform distinct functions and draw from different pools of resources, which should result in their independent evolution. We examine these competing hypotheses using two independent datasets of fleshy fruits we collected from Madagascar and Uganda. We sampled mechanical defences, indexed by fruit puncture resistance, and defensive defences, indexed by defensive volatile organic compounds, and examined their associations using phylogenetically-controlled models. In both systems, we found no correlation between mechanical and chemical defences, thus supporting the independent evolution hypothesis. This implies that fruit defence mechanisms reflect a more complex array of selection pressures and constraints than previously perceived.  相似文献   

10.
Pistacia atlantica, P. palaestina, P. lentiscus and P. saportae , were found to have great similarity in their embryology and fruit development. The anatropous, pendulous and crassinucellate ovule was initially unitegmic; later, the integument split close to the micropyle, forming a partial second integument. After anthesis there was a development of a hypostase and an obturator. The development of the Polygonum-type embryo sac followed division of a megaspore mother cell, giving a tetrad or triad of megaspores. The functional megaspore was the chalazal one. The ovary developed into a mature pericarp after anthesis, even when pollination was prevented, and before the zygote divided. Therefore, the fruit can be parthenocarpic. The ovule started to grow after initiation of embryo development until it filled the cavity within the pericarp. The zygotes were dormant for 4–18 weeks after pollination. In P. saportae reproduction became arrested during the development of the embryo sac; only very few abnormal embryos were found. No fixed pattern of embryo development could be discerned. The endosperm was initially nuclear, becoming cellular when the embryo started to develop. The seed coat was derived from the integument and the remnants of the nucellus.  相似文献   

11.
In the ovules of Vanilla (Vanilla planifolia Andr.) before fertilization, outer integument surrounded the lower part of ovule. Uranin got into ovule through funiculus, forming, the first center of fluorescence at the chalaza zone of ovule. Then uranin was transported to micropyle end along inner integument, forming the second center of fluorescence at micropyle end of inner integument. Soon, fluorescence appeared in the egg apparatua. After fertilization, the outer integument ovule extended upward, forming micropyle ogerber with inner integument. After getting into ovule through funiculus, uranin spreads to- ward several directions: l. transported to outer integument at the entrance of micropyle; 2. transported downward to chalaza zone along outer integument at the side of funiculus; 3. extended from chalaza zone to the inside and to the outer integument at the side far from funiculus The ovules of Vanilla had no vascular bundles. On transporting in inner integument, however, the cells in inner layer next to the embryo sac appeared to be the major passage. In mature embryo sac, there was cuticle between inner integument and embryo sac at the half of micropyle end. But between embryo sac at the half of chalaza end and nucellus, cuticle was absent. Nutrient could get into embryo sac from chalaza end undoubtedly. As egg apparatus showed the fluorescence after formation of fluorescence center of inner integument at micropylar end, the possibility that nutrient got into embryo sac from micropyle could not be excluded.  相似文献   

12.
1. The gall‐forming midge Rhopalomyia californica was exposed experimentally to parasitism and predation during only the egg stage, during only the larval stage, during neither stage, or during both stages. 2. The combined action of natural enemies that attack during both the egg stage and the larval stage led to the lowest number of midges and total insects (midges + parasitoids) in the next generation, and the highest percentage parasitism. 3. The larval parasitoid killed a large fraction of hosts without producing new parasitoid offspring, while there is some indication that the egg parasitoid on its own tended to produce the most parasitoid offspring. The contrasting implications of host mortality versus parasitoid production for biological control are discussed. 4. Exposure to larval parasitoids resulted in a reduction in the number of egg parasitoid offspring produced, but exposure to the egg parasitoid did not affect the number of larval parasitoid offspring produced significantly.  相似文献   

13.
Morphology and physiology of fruit and seed development were compared in Rhus aromatica and R. glabra (Anacardiaceae), both of which produce drupes with water-impermeable endocarps. Phenology of flowering/fruiting of the two species at the study site was separated by ∼2 mo. However, they were similar in the timetable and pattern of fruit and seed development; it took ∼2 mo and ∼1.5 mo for flowers of Rhus aromatica and R. glabra, respectively, to develop into mature drupes. The single sigmoidal growth curve for increase in fruit size and in dry mass of these two species differs from the double-sigmoidal one described for typical commercial drupes such as peach and plum. Order of attainment of maximum size was fruit and endocarp (same time), seed coat, and embryo. By the time fruits turned red, the embryo had reached full size and become germinable; moisture content of seed plus endocarp had decreased to ∼40%. The endocarp was the last fruit component to reach physiological maturity, which coincided with development of its impermeability and a seed plus endocarp moisture content of <10%. At this time, ∼50, 37, and 13% of the dry mass of the drupe was allocated to the exocarp plus mesocarp unit, endocarp, and seed, respectively. The time course of fruit and seed development in these two species is much faster than that reported for other Anacardiaceae, including Rhus lancea, Protorhus, and Pistacia.  相似文献   

14.
Gall midges are important pests in many crops. In fruit, they are difficult to control due to their life cycle, which takes place partially within the fruit. Here, we provide the first successful laboratory experiment to infect pear gall midge (Contarinia pyrivora) with the insect pathogenic fungus Metarhizium brunneum. We developed a procedure for sampling larvae, maintaining them in the laboratory and subjecting them to the fungus. We demonstrated that dipping larvae in a fungus suspension or adding a fungus suspension to the soil result in significant fungus induced mortality of the pear gall midge. An immune response in treated larvae was recorded proving that there was a real pathogenesis. Finally, we discuss next steps and a strategy for field experiments.  相似文献   

15.
Variation in damage levels on certain black currant, Ribes nigrum L., genotypes, caused by the black currant leaf midge, Dasineura tetensi (Rübs.) (Diptera: Cecidomyiidae), has been observed in northern Sweden. I investigated whether this variation is due to variation in virulence among midges. From a field population of midges, I successfully selected for virulence and avirulence, respectively, on the resistant black currant genotype cultivar `Storklas' (called resistant genotype). The performance of avirulent and virulent midge larvae on two black currant genotypes were studied in experiments where first or second instar larvae were artificially transferred. There were no differences in larval survival and developmental rate between the two midge types when transferred to the susceptible currant genotype `7801–31' (called susceptible genotype). Larvae of the virulent strain established galls and developed on `Storklas' but development was initially slower there than on the susceptible currant genotype. Larvae of the avirulent strain suffered high mortality or remained in first instar on that same currant genotype when transferred alone, but developed readily if transferred together with virulent larvae. Larvae transferred in second instar to host plants susceptible to the larvae resumed feeding and developed further to maturity. Second instar larvae were also able to establish new galls even though these galls were not as well developed as those caused by first instar larvae. Black currant plantations in northern Sweden were surveyed and local midge populations were found to be composed of either avirulent, virulent or a mixture of both midge types. Virulent midges were not restricted to plantations where resistant currant genotypes were grown. I conclude that, at least, two biotypes of the midge exist, and that those two are distinguished by the ability to gall and survive on `Storklas'.  相似文献   

16.
Benefits to plants in facultative ant protection mutualisms are highly variable. This allows examination of the sources of this variation and the mechanisms by which ants protect plants. We studied opportunistic interactions between ants and an extrafloral nectary-bearing vine, Dioscorea praehensilis, during 3 different years. Variation in plant protection among years was striking. Several factors affected the effectiveness of the biotic defence. Stems recently emerged from the underground tuber were self-supporting, contacting no other plants and encountering few foraging ants. Stems then became lianescent, and contact with supporting plants greatly increased ant recruitment. Both species and number of ant workers influenced the effect of ants on the major herbivore, the chrysomelid beetle Lilioceris latipennis. Protective actions included limitation of oviposition (reduction in the number of eggs laid on the plant) and predation, leading to increased larval mortality. The probability of successful predation was strongly dependent on larval size. If temporarily low ant-patrolling activity allows larvae to grow beyond a critical size, their mechanical (thick integument) or chemical (plant-derived compounds in a fecal shield) defences become more effective against ants. Secondary metabolites derived from the host plant thus appear to be important for the anti-predator mechanisms of this beetle, being necessary for its survival and reproduction on a host plant that actively recruits ants as a biotic defence against herbivores.  相似文献   

17.
Abstract.
  • 1 Substantial intraspecific variation exists in Salix viminalis resistance to the gall midge Dasineura marginemtorquens. Earlier work has found this variation to have a large genetic component. Willow clones are stable in their resistances between midge generations and different nutrient levels in both field and laboratory culture.
  • 2 This study reports the results of laboratory experiments on female oviposition choice and larval survival on potted plants from clones that are very different in resistance as determined in field studies.
  • 3 In choice experiments using pairs of plants, the average female midge did not prefer susceptible willow clones over resistant ones for oviposition. In about one third of the replicates, midges actually laid more eggs on the resistant clone. Further work is necessary to examine the nature of variation among midges in discrimination of these plant types.
  • 4 Resistance is manifested as great differences in larval survival. Six days after oviposition survival was 92% on susceptible plants but only 6% on resistant ones. Galls developed on all of the susceptible plants, while in 73% of the resistant plants galls were not even initiated.
  • 5 The plant traits causing resistance are enigmatic. Larval behaviour suggests that resistant plants interfere with feeding behaviour. On resistant plants, most larvae wander for more than 24 h without initiating any galls before dying. On susceptible plants many first instar larvae begin feeding and initiate galls within this period.
  相似文献   

18.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

19.
Four gall midge species (Diptera: Cecidomyiidae) that induce leaf galls on Styrax japonicus (Styracaceae) were identified to generic level based on larval morphology. Three of these gall midges, which induce whitish hemiglobular galls, flattened subglobular galls, and purple globular galls, respectively, were identified as three genetically distinct species of Contarinia, and the remaining species, which induces globular galls with dense whitish hairs, was identified as a species of Dasineura. Field surveys in Fukuoka, Japan, revealed that adults of these gall midges emerged and oviposited in late March to mid‐April at Mount Tachibana (approximately 200 m a.s.l.) and in late April to early May at Mount Sefuri (about 1050 m a.s.l.), coinciding with the leaf‐opening season of S. japonicus. Larvae of these gall midges mostly developed into third instars by June and then left their galls and dropped to the ground. These species therefore have a life history strategy that differs from that of another S. japonicus‐associated gall midge, Oxycephalomyia styraci, which overwinters as the first instar in ovate swellings, matures rapidly in spring, and emerges directly from the galls.  相似文献   

20.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号