首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.  相似文献   

2.
Chitosan, a polysaccharide, having structural characteristics similar to glycosaminoglycans, seems to be nontoxic and bioabsorbable. This study highlights the use of chitosan matrix for controlled drug delivery systems. The steroid drugs, namely testosterone, progesterone and beta-oestradiol were mixed with chitosan and the films were prepared by evaporation technique. The in vitro release profile of these steroids from the film matrix was monitored, as a function of time, in phosphate buffered saline (PBS, pH 7.4) at 37 degree C using a U-V-spectrophotometer. The degradation, of these chitosan and drug loaded chitosan films, was also investigated by weight loss and tensile strength studies. The steroid release from chitosan films was compared with the release of these drugs from their microbeads. It appears, the films and the microbeads stayed intact during the dissolution study of 90 days and the possibility of using these systems in contraceptive applications and novel drug delivery systems are discussed.  相似文献   

3.
In the present work, an attempt has been made to screen Prosopis africana seed gum (PG), anionic polymer for extended release tablet formulation. Different categories of drugs (charge basis) like diclofenac sodium (DS), chlorpheniramine maleate (CPM), and ibuprofen (IB) were compacted with PG and compared with different polymers (charge basis) like xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC-K100M), and chitosan (CP). For each drug, 12 batches of tablets were prepared by wet granulation technique, and granules were evaluated for flow properties, compressibility, and compactibility by Heckel and Leuenberger analysis, swelling index, in vitro dissolution studies, etc. It has been observed that granules of all batches showed acceptable flowability. According to Heckel and Leuenberger analysis, granules of PG-containing compacts showed similar and satisfactory compressibility and compactibility compared to granules of other polymers. PG showed significant swelling (P < 0.05) compared to HPMC, and better than CP and XG. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) study showed no interaction between drugs and polymers. From all PG-containing compacts of aforesaid drugs, drug release was sustained for 12 h following anomalous transport. Especially, polyelectrolyte complex formation retarded the release of oppositely charged drug (CPM-PG). However, extended release was noted in both anionic (DS) and nonionic (IB) drugs, maybe due to swollen gel. All compacts were found to be stable for 3-month period during stability study. This concludes that swelling and release retardation of PG has close resemblance to HPMC, so it can be used as extended release polymer for all types of drugs.KEY WORDS: chlorpheniramine maleate, diclofenac sodium, extended release, ibuprofen, Prosopis africana  相似文献   

4.
Li H  Hardy RJ  Gu X 《AAPS PharmSciTech》2008,9(2):437-443
The purpose of the study was to investigate the effect of drug solubility on polymer hydration and drug dissolution from modified release matrix tablets of polyethylene oxide (PEO). Different PEO matrix tablets were prepared using acetaminophen (ACE) and ibuprofen (IBU) as study compounds and Polyox WSR301 (PEO) as primary hydrophilic matrix polymer. Tablet dissolution was tested using the USP Apparatus II, and the hydration of PEO polymer during dissolution was recorded using a texture analyzer. Drug dissolution from the preparations was dependent upon drug solubility, hydrogel formation and polymer proportion in the preparation. Delayed drug release was attributed to the formation of hydrogel layer on the surface of the tablet and the penetration of water into matrix core through drug dissolution and diffusion. A multiple linear regression model could be used to describe the relationship among drug dissolution, polymer ratio, hydrogel formation and drug solubility; the mathematical correlation was also proven to be valid and adaptable to a series of study compounds. The developed methodology would be beneficial to formulation scientists in dosage form design and optimization.  相似文献   

5.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.Key words: aceclofenac, chitosan, matrix tablet, pharmacokinetics, sustained release  相似文献   

6.
The purpose of this research was to develop and evaluate different preparations of sustained delivery systems, using Carbopols as carriers, in the form of matrices and three-layer tablets with isosorbite mononitrate. Matrix tablets were prepared by direct compression whereas three-layer tablets were prepared by compressing polymer barrier layers on both sides of the core containing the drug. The findings of the study indicated that all systems demonstrated sustained release. The properties of the polymer used and the structure of each formulation appear to considerably affect drug release and its release rate. The three-layer formulations exhibit lower drug release compared to the matrices. This was due to the fact that the barrier-layers hindered the penetration of liquid into the core and modified drug dissolution and release. The geometrical characteristics/structure of the tablets as well as the weight/thickness of the barriers-layers considerably influence the rate of drug release and the release mechanisms. Kinetic analysis of the data indicated that drug release from matrices was mainly attributed to Fickian diffusion while three-layer tablets exhibited either anomalous diffusion or erosion/relaxation mechanisms. The advantage of Carbopol formulations is that a range of release profiles can easily be obtained through variations in tablet structure and thus Carbopols are appropriate carriers of oral sustained drug delivery systems for soluble drugs such as the isosorbite mononitrate.  相似文献   

7.
The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60°C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer.  相似文献   

8.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.  相似文献   

9.
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi’s and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi’s equation.  相似文献   

10.
The objective of present investigation was to develop venlafaxine hydrochloride-layered tablets for obtaining sustained drug release. The tablets containing venlafaxine hydrochloride 150 mg were prepared by wet granulation technique using xanthan gum in the middle layer and barrier layers. The granules and tablets were characterized. The in vitro drug dissolution study was conducted in distilled water. The tablets containing two lower strengths were also developed using the same percentage composition of the middle layer. Kinetics of drug release was studied. The optimized batches were tested for water uptake study. Radar diagrams are provided to compare the performance of formulated tablets with the reference products, Effexor XR capsules. The granules ready for compression exhibited good flow and compressibility when xanthan gum was used in the intragranular and extragranular fractions. Monolayer tablets failed to give the release pattern similar to that of the reference product. The drug release was best explained by Weibull model. A unified Weibull equation was evolved to express drug release from the formulated tablets. Lactose facilitated drug release from barrier layers. Substantial water uptake and gelling of xanthan gum appears to be responsible for sustained drug release. The present study underlines the importance of formulation factors in achieving same drug release pattern from three strengths of venlafaxine hydrochloride tablets.  相似文献   

11.
The aim of the present work was the investigation of robustness and reliability of drug release from 50 to 400 mg quetiapine extended release HPMC matrix tablets towards mechanical stresses of biorelevant intensity. The tests were performed under standard conditions (USP apparatus II) as well as under simulated gastrointestinal stress conditions. Mechanical stresses including pressure and agitation were applied by using the biorelevant dissolution stress test apparatus as it has been introduced recently. Test algorithms already established in previous studies were applied to simulate fasting gastrointestinal conditions. The dissolution experiments demonstrated striking differences in the product performance among standard and stress test conditions as well as dose strengths. In USP apparatus II, dissolution profiles were affected mainly by media pH. The dissolution experiments performed in biorelevant dissolution stress test device demonstrated that stress events of biorelevant intensity provoked accelerated drug release from the tablets.  相似文献   

12.
Chitosan is a well sought-after polysaccharide in biomedical applications and has been blended with various macromolecules to mitigate undesirable properties. However, the effects of blending on the unique antibacterial activity of chitosan as well as changes in fatigue and degradation properties are not well understood. The aim of this work was to evaluate the anti-bacterial properties and changes in physicochemical properties of chitosan upon blending with synthetic polyester poly(epsilon-caprolactone) (PCL). Chitosan and PCL were homogeneously dissolved in varying mass ratios in a unique 77% acetic acid in water mixture and processed into uniform membranes. When subjected to uniaxial cyclical loading in wet conditions, these membranes sustained 10 cycles of predetermined loads up to 1 MPa without break. Chitosan was anti-adhesive to Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans bacteria. Presence of PCL compromised the antibacterial property of chitosan. Four-week degradation studies in PBS/lysozyme at 37 degrees C showed initial weight loss due to chitosan after which no significant changes were observed. Molecular interactions between chitosan and PCL were investigated using Fourier transform infrared spectroscopy (FTIR) which showed no chemical bond formations in the prepared blends. Investigation by wide-angle X-ray diffraction (WAXD) indicated that the crystal structure of individual polymers was unchanged in the blends. Dynamic mechanical and thermal analysis (DMTA) indicated that the crystallinity of PCL was suppressed and its storage modulus increased with the addition of chitosan. Analysis of surface topography by atomic force microscopy (AFM) showed a significant increase in roughness of all blends relative to chitosan. Observed differences in biological and anti-bacterial properties of blends could be primarily attributed to surface topographical changes.  相似文献   

13.
The effect of concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic polymers (hydrogenated castor oil [HCO], ethylcellulose) on the release rate of tramadol was studied. Hydrophilic matrix tablets were prepared by wet granulation technique, while hydrophobic (wax) matrix tablets were prepared by melt granulation technique and in vitro dissolution studies were performed using United States Pharmacopeia (USP) apparatus type II. Hydrophobic matrix tablets resulted in sustained in vitro drug release (>20 hours) as compared with hydrophilic matrix tablets (<14 hours). The presence of ethylcellulose in either of the matrix systems prolonged the release rate of the drug. Tablets prepared by combination of hydrophilic and hydrophobic polymers failed to prolong the drug release beyond 12 hours. The effect of ethylcellulose coating (Surelease) and the presence of lactose and HPMC in the coating composition on the drug release was also investigated. Hydrophobic matrix tablets prepared using HCO were found to be best suited for modulating the delivery of the highly water-soluble drug, tramadol hydrochloride.  相似文献   

14.
The objectives of this study were to prepare push–pull osmotic tablets (PPOT) of felodipine using an interpolymer complex of chitosan (CS) and poly(acrylic acid) (PAA) as an osmopolymer, and to study the mechanisms of drug release from these tablets. The interpolymer complexes were prepared with different weight ratios of CS to PAA. Preparation of PPOT involved the fabrication of bilayered tablets with the drug layer, containing felodipine, polyethylene oxide, and the polymeric expansion layer, containing the CS–PAA complex. The effects of polymer ratios, type of plasticizers, and compression forces on release characteristics were investigated. It was found that drug release from PPOT exhibited zero-order kinetics and could be prolonged up to 12 or 24 h depending on the plasticizer used. PPOT using dibutyl sebacate showed a longer lag time and slower drug release than that using polyethylene glycol 400. In the case of polyethylene glycol 400, an increase in the CS proportion resulted in an increase in the drug release rate. The compression force had no effect on drug release from PPOT. Drug release was controlled by two consecutive mechanisms: an osmotic pump effect resulting in the extrusion of the drug layer from the tablet and subsequent erosion and dissolution of the extruded drug layer in the dissolution medium. The mathematical model (zero-order) related to extrusion and erosion rates for describing the mechanism of drug release showed a good correlation between predicted and observed values.  相似文献   

15.
The purpose of the present research was to produce a quick/slow biphasic delivery system for ibuprofen. A dual-component tablet made of a sustained release tableted core and an immediate release tableted coat was prepared by direct compression. Both the core and the coat contained a model drug (ibuprofen). The sustained release effect was achieved with a polymer (hydroxypropyl methylcellulose [HPMC] or ethylcellulose) to modulate the release of the drug. The in vitro drug release profile from these tablets showed the desired biphasic release behavior: the ibuprofen contained in the fast releasing component was dissolved within 2 minutes, whereas the drug in the core tablet was released at different times (⊂16 or >24 hours), depending on the composition of the matrix tablet. Based on the release kinetic parameters calculated, it can be concluded that the HPMC core was suitable for providing a constant and controlled release (zero order) for a long period of time. Published: September 21, 2007  相似文献   

16.
The purpose of this study was to investigate the physicochemical properties of nonpareil beads coated with Eudragit RS 30 D containing ibuprofen as a multifunctional agent. The influence of the concentration of ibuprofen in the film coating and the effect of the coating level on drug release from coated beads was determined in pH 7.2 phosphate buffer solution. The influence of storage time at 23 degrees C and 60 degrees C on the release of ibuprofen from coated beads was also investigated. The thermal properties of the films were determined using a differential scanning calorimeter. Scanning electron microscopy was employed to image the surface morphology of the coated beads. Infrared spectroscopy was used to study the interaction of Eudragit RS 30 D and ibuprofen. Results from the dissolution studies demonstrated that increasing the amount of ibuprofen in the polymeric film reduced the rate of drug release, mainly because of a more complete coalescence of the polymeric particles of the latex dispersion. The glass transition temperature (Tg) of Eudragit RS 30 D films decreased and the surface of the coated beads became smoother as the concentration of ibuprofen was increased. Hydrogen bonding between the polymer and ibuprofen was demonstrated by Fourier transform infrared spectroscopy. No significant differences were found in drug dissolution between the coated beads stored at 23 degrees C for 12 months and those stored at 60 degrees C for 12 hours. The results of this study demonstrated that the ibuprofen plasticized the Eudragit RS 30 D. Furthermore, the dissolution rate of ibuprofen can be controlled and changes in the drug release rate can be minimized by using the drug-induced plasticization technique with this polymer.  相似文献   

17.
Sugar end-capped poly-d,l-lactide (SPDLA) polymers were investigated as a potential release controlling excipient in oral sustained release matrix tablets. The SPDLA polymers were obtained by a catalytic ring-opening polymerization technique using methyl α-d-gluco-pyranoside as a multifunctional initiator in the polymerization. Polymers of different molecular weights were synthesized by varying molar ratios of monomer/catalyst. The matrix tablets were prepared by direct compression technique from the binary mixtures of SPDLA and microcrystalline cellulose, and theophylline was used as a model drug. The tablet matrices showed in vitro reproducible drug release profiles with a zero-order or diffusion-based kinetic depending on the SPDLA polymer grade used. Further release from the tablet matrices was dependent on the molecular weight of the SPDLA polymer applied. The drug release was the fastest with the lowest molecular weight SPDLA grade, and the drug release followed zero-order rate. With the higher molecular weight SPDLAs, more prolonged dissolution profiles for the matrix tablets (up to 8–10 h) were obtained. Furthermore, the prolonged drug release was independent of the pH of the dissolution media. In conclusion, SPDLAs are a novel type of drug carrier polymers applicable in oral controlled drug delivery systems.  相似文献   

18.
Local delivery of antibiotic into injured bone is a demand. In this work, different scaffolds of chitosan (C) with or without bioactive glass (G) were prepared using the freeze-drying technique in 2:1, 1:1, and 1:2 weight ratios. Chitosan scaffolds and selected formulas of chitosan to bioglass were loaded with ciprofloxacin in 5%, 10%, and 20% w/w. Scaffold morphology showed an interconnected porous structure, where the glass particles were homogeneously dispersed in the chitosan matrix. The kinetic study confirmed that the scaffold containing 1:2 weight ratio of chitosan to glass (CG12) showed optimal bioactivity with good compromise between Ca and P uptake capacities and Si release rate. Chitosan/bioactive glass scaffolds showed larger t 50 values indicating less burst drug release followed by a sustained drug release profile compared to that of chitosan scaffolds. The cell growth, migration, adhesion, and invasion were enhanced onto CG12 scaffold surfaces. Samples of CG12 scaffolds with or without 5% drug induced vascular endothelial growth factor (VEGF), while those containing 10% drug diminished VEGF level. Only CG12 induced the cell differentiation (alkaline phosphatase activity). In conclusion, CG12 containing 5% drug can be considered a biocompatible carrier which would help in the localized osteomyelitis treatment.  相似文献   

19.
The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were compared to those of Tegretol CR tablets and the mean dissolution time (MDT), dissolution efficiency (DE %) and similarity factor (f(2) factor) were calculated. It was found that increase in the concentration of HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to case II by the increase of HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceleration of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the tablets. These results suggest that wet granulation followed by compression could be a suitable method to formulate sustained release CBZ tablets.  相似文献   

20.
The aim of the present study was to prepare and characterize extended-release matrix tablets of zidovudine using hydrophilic Eudragit RLPO and RSPO alone or their combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using United States Pharmacopeia (USP)-22 type I dissolution apparatus. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. Furthermore, the in vitro and in vivo newly formulated sustained-release zidovudine tablets were compared with conventional marketed tablet (Zidovir, Cipla Ltd, Mumbai, India). The in-vitro drug release study revealed that either Eudragit preparation was able to sustain the drug release only for 6 hours (94.3%±4.5% release). Combining Eudragit with ethyl cellulose sustained the drug release for 12 hours (88.1%±4.1% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. In vivo investigation in rabbits showed sustained-release pharmacokinetic profile of zidovudine from the matrix tablets formulated using combination of Eudragits and ethylcellulose. In conclusion, the results suggest that the developed sustained-release tablets of zidovudine could perform therapeutically better than conventional dosage forms, leading to improve efficacy and better patient compliance. Published: January 3, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号