首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
PRELP (proline arginine-rich end leucine-rich repeat protein) is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also, recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nm as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.  相似文献   

2.
Proline/arginine-rich end leucine-rich repeat protein (PRELP) belongs to the small leucine-rich proteoglycan (SLRP) family, normally expressed in extracellular matrix of collagen-rich tissues. We have previously reported on another SLRP, fibromodulin (FMOD) in patients with chronic lymphocytic leukemia (CLL). PRELP is structurally similar to FMOD with adjacent localization on chromosome 1 (1q32.1). As cluster-upregulation of genes may occur in malignancies, the aim of our study was to analyze PRELP expression in CLL. PRELP was expressed (RT-PCR) in all CLL patients (30/30), as well as in some patients with mantle cell lymphoma (3/5), but not in healthy donor leukocytes (0/20) or tumor samples from other hematological malignancies (0/35). PRELP was also detected in CLL cell-lines (4/4) but not in cell-lines from other hematological tumors (0/9). PRELP protein was detected in all CLL samples but not in normal leukocytes. Deglycosylation experiments revealed a CLL-unique 38 kDa core protein, with an intact signal peptide. This 38 kDa protein was, in contrast to the normal 55 kDa size, not detected in serum which, in combination with the uncleaved signal peptide, suggests cellular retention. The unique expression of a 38 kDa PRELP in CLL cells may suggest involvement in the pathobiology of CLL and merits further studies.  相似文献   

3.
The cDNA sequence of the murine proline/arginine-rich end leucine-rich repeat protein (PRELP) gene was cloned by PCR-based techniques. The gene encodes a protein of 378 amino acids, which is four amino acid residues shorter than its human counterpart. This difference resides mainly in the amino terminal region of the mature protein, which is five amino acids shorter in the mouse than the human and has a lower arginine content. The remainder of the protein, including the structure of the leucine-rich repeats, the potential sites for N-linked glycosylation, and the disulfide-bonded domains are well conserved between species. In common with humans, the murine gene possesses three exons, with the translation initiation codon residing in exon 2 and the termination codon in exon 3. Exons 1 and 2 are separated by an intron of approximately 6.7 kbp, whereas exons 2 and 3 are separated by an intron of approximately 1.7 kbp. Western blot analysis of mouse cartilage extracts indicates that PRELP exists as a glycoprotein of approximately 55 kDa, as in human cartilage. Immunohistochemical and in situ hybridization analysis reveal that PRELP is expressed in cartilage throughout both fetal development and post-natal life, in contrast to the human where expression in cartilage is not apparent prior to birth. Northern blot analysis indicates that PRELP mRNA is also expressed in the developing embryo prior to skeletogenesis. The promoter region of the mouse PRELP gene possesses no TATA box in its proximal region, in common with humans, and shows differences in the conservation of elements known to be involved in regulating expression of the human PRELP gene.  相似文献   

4.
PRELP is a 58-kDa proteoglycan found in a variety of extracellular matrices, including cartilage and at several basement membranes. In rheumatoid arthritis (RA), the cartilage tissue is destroyed and fragmented molecules, including PRELP, are released into the synovial fluid where they may interact with components of the complement system. In a previous study, PRELP was found to interact with the complement inhibitor C4b-binding protein, which was suggested to locally down-regulate complement activation in joints during RA. Here we show that PRELP directly inhibits all pathways of complement by binding C9 and thereby prevents the formation of the membrane attack complex (MAC). PRELP does not interfere with the interaction between C9 and already formed C5b-8, but inhibits C9 polymerization thereby preventing formation of the lytic pore. The alternative pathway is moreover inhibited already at the level of C3-convertase formation due to an interaction between PRELP and C3. This suggests that PRELP may down-regulate complement attack at basement membranes and on damaged cartilage and therefore limit pathological complement activation in inflammatory disease such as RA. The net outcome of PRELP-mediated complement inhibition will highly depend on the local concentration of other complement modulating molecules as well as on the local concentration of available complement proteins.  相似文献   

5.
6.
PRELP (proline, arginine-rich end leucine-rich repeat protein) is an extracellular matrix leucine-rich repeat protein. The amino-terminal region of PRELP differs from that of other leucine-rich repeat proteins in containing a high number of proline and arginine residues. The clustered proline and basic residues are conserved in rat, bovine, and human PRELP. Although the function of PRELP is not yet known, the clustered arginine residues suggest a heparan sulfate/heparin-binding capacity. We show here that PRELP indeed binds heparin and heparan sulfate. Truncated PRELP without the amino-terminal region does not bind heparin. The dissociation constant for the interaction of PRELP with heparin was determined by an in solution binding assay and by surface plasmon resonance analysis to be in the range of 10-30 nm. A 6-mer heparin oligosaccharide was the smallest size showing binding to PRELP. The binding increased with increasing length up to an 18-mer and depended on the degree of sulfation of heparin as well as heparan sulfate. Sulfate groups at all positions were shown to be of importance for the binding. Fibroblasts bind PRELP, and this interaction is inhibited with heparin, suggesting a function for PRELP as a linker between the matrix and cell surface proteoglycans.  相似文献   

7.
Integrity of the extracellular matrix (ECM) is essential for maintaining the normal structure and function of connective tissues. ECM is secreted locally by cells and organized into a complex meshwork providing physical support to cells, tissues, and organs. Initially thought to act only as a scaffold, the ECM is now known to provide a myriad of signals to cells regulating all aspects of their phenotype from morphology to differentiation. Matricellular proteins are a class of ECM related molecules defined through their ability to modulate cell-matrix interactions. Matricellular proteins are expressed at high levels during development, but typically only appear in postnatal tissue in wound repair or disease, where their levels increase substantially. Members of the CCN family, tenascin-C, osteopontin, secreted protein acidic rich in cysteine (SPARC), bone sialoprotein, thrombospondins, and galectins have all been classed as matricellular proteins. Periostin, a 90 kDa secreted homophilic cell adhesion protein, was recently added to matricellular class of proteins based on its expression pattern and function during development as well as in wound repair. Periostin is expressed in connective tissues including the periodontal ligament, tendons, skin and bone, and is also prominent in neoplastic tissues, cardiovascular disease, as well as in connective tissue wound repair. This review will focus on the functional role of periostin in tissue physiology. Fundamentally, it appears that periostin influences cell behaviour as well as collagen fibrillogenesis, and therefore exerts control over the structural and functional properties of connective tissues in both health and disease. Periostin is a novel matricellular protein with close homology to Drosophila fasciclin 1. In this review, the functional role of periostin is discussed in the context of connective tissue physiology, in development, disease, and wound repair.  相似文献   

8.
Chicken tenascin-Y is an extracellular matrix protein most closely related to the mammalian tenascin-X. It is highly expressed in the connective tissue of skeletal muscle (C. Hagios, M. Koch, J. Spring, M. Chiquet, and R. Chiquet-Ehrismann, 1996, J. Cell Biol. 134, 1499-1512). Here we demonstrate the presence of tenascin-Y in specific areas of the connective tissues in developing lung, kidney, and skin. In skin tenascin-Y shows a complementary expression pattern to tenascin-C, whereas in the lung and kidney the sites of expression are partly overlapping. Tenascin-Y is also present in embryonic skeletal muscle where it is expressed in the developing connective tissue in between the muscle fibers. This connective tissue is also the major site of alpha5 integrin expression. We purified recombinantly expressed tenascin-Y and tested its effect on cell adhesion and its influence on muscle cell growth and differentiation. C2C12 myoblasts were able to adhere to tenascin-Y and showed extensive formation of actin-rich processes without generation of stress fibers. Furthermore, we found that tenascin-Y influenced cell morphology of chick embryo fibroblasts over prolonged times in culture and that it supports primary muscle cell growth and restricts muscle cell differentiation.  相似文献   

9.
Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII α1 chain was characterized as a collagenase sensitive band migrating at ~ 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.  相似文献   

10.
The symmetrically cleaving beta-carotene 15,15'-monooxygenase (BCO1) catalyzes the first step in the conversion of provitamin A carotenoids to vitamin A in the mucosa of the small intestine. This enzyme is also expressed in epithelia in a variety of extraintestinal tissues. The newly discovered beta-carotene 9',10'-monooxygenase (BCO2) catalyzes asymmetric cleavage of carotenoids. To gain some insight into the physiological role of BCO2, we determined the expression pattern of BCO2 mRNA and protein in human tissues. By immunohistochemical analysis it was revealed that BCO2 was detected in cell types that are known to express BCO1, such as epithelial cells in the mucosa of small intestine and stomach, parenchymal cells in liver, Leydig and Sertoli cells in testis, kidney tubules, adrenal gland, exocrine pancreas, and retinal pigment epithelium and ciliary body pigment epithelia in the eye. BCO2 was uniquely detected in cardiac and skeletal muscle cells, prostate and endometrial connective tissue, and endocrine pancreas. The finding that the BCO2 enzyme was expressed in some tissues and cell types that are not sensitive to vitamin A deficiency and where no BCO1 has been detected suggests that BCO2 may also be involved in biological processes other than vitamin A synthesis.  相似文献   

11.
In fibrous connective tissues, fibroblasts are organized into syncytia, cellular networks that enable matrix remodeling and that are interconnected by intercellular adherens junctions (AJs). The AJs of fibroblasts are mediated by N-cadherin, a broadly expressed classical cadherin that is critically involved in developmental processes, wound healing and several diseases of mesenchymal tissues. In contrast to E-cadherin-dependent junctions of epithelia, the formation of AJs in fibrous connective tissues is relatively uncharacterized. Work over the last several years has documented an expanding list of molecules which function to regulate N-cadherin mediated junctions such as: Fer, PTP1B, cortactin, calcium, gelsolin, PIP5KIgamma, PIP2, and the Rho family of GTPases. We present an overview on the regulation of N-cadherin-mediated junction formation that highlights recent molecular advances in the field and rationalizes the roles of N-cadherin in connective tissue function.  相似文献   

12.
Mesenchymal stem cells from human bone marrow (MSC) express mRNA encoding the L-type Ca2+ channel Ca v 1.2 alpha1 subunit (alpha(1)1.2). We now describe a splice variant including an alternative exon of 75 bp in the region between exons 9 and 10, which we identified in MSC by semi-quantitative RT-PCR. With primers specific for variants including (+9*) or excluding the 75 bp insertion (-9*), we found comparable mRNA expression patterns in MSC and in primary cultures of related connective tissue cells (chondrocytes, osteoblasts and fibroblasts). Since culture conditions might have altered variant expression, we investigated mRNA levels in various native human tissue samples (cartilage, bone, fat, liver, kidney, aorta, bladder, cardiac ventricle and atrium, CNS). We found highest levels of the +9* variant in aorta, containing smooth muscle and connective tissue cells, but the variant was expressed in all tissues. We therefore hypothesized that broad expression of +9* might be linked to the presence of vasculature and/or connective tissue structures, rather than to tissue-specific parenchymal cells (e.g. cardiomyocytes). To test this hypothesis we separated human atrium into a cardiomyocyte-enriched fraction and a cardiomyocyte-depleted fraction. RT-PCR demonstrated significantly larger levels of the +9* variant in the non-cardiomyocyte fraction. The result was even more clear in single cell RT-PCR experiments, where the +9* variant was undetectable in cardiomyocytes but present in non-cardiomyocytes. We conclude that the +9* variant is present in all human tissues investigated so far, and suggest that expression in human atrium is associated with vascular smooth muscle and/or connective tissue cells.  相似文献   

13.
Summary To determine the histochemical localization of asparagine-linked oligosaccharides of glycoproteins in a series of different mammalian and avian tissues, the effects of digestion with N-oligosaccharide glycopeptidase upon certain lectin-peroxidase-diaminobenzidine reactions of the histological structures involved have been studied by light microscopy. Throughout the tissues examined, asparaginelinked oligosaccharides of glycoproteins were localized mainly in histological structures of connective and muscular tissues, but were hardly or not visualized in those of epithelial tissues. these results appear to lead to the concept that connective and muscular tissues represent the main sites where plasma types of glycoproteins are involved in mammalian and avian species.  相似文献   

14.
Expression of matrilins during maturation of mouse skeletal tissues.   总被引:5,自引:0,他引:5  
The matrilins are a recently discovered family of non-collagenous extracellular matrix proteins. During embryogenesis, all matrilins are expressed in skeletal tissues. Additionally, matrilin-2 and -4 are expressed in the dermis and in connective tissues of internal organs, e.g. of the lung and kidney. After birth, the expression of matrilin-1 and -3 remains specific for cartilage and bone whereas matrilin-2 and -4 display a broader tissue distribution and could be detected in epithelial, muscle, and nervous tissue as well as in loose and dense connective tissue. In epiphyseal cartilage of growing long bones, matrilin-1 and -3 are present in all cartilage regions, in contrast to matrilin-2, which is expressed in the proliferative and the upper hypertrophic zones. Similarly matrilin-4 was detected all over the epiphyseal cartilage, with the weakest expression in the hypertrophic zone. Although it was shown that matrilin-1 and -3 can form hetero-oligomers and are often co-localized in tissue, clear differences in their spatial distribution could be demonstrated by double-immunolabelling. During joint development matrilin-2 and matrilin-4 are present at the developing joint surface, while in articular cartilage of 6-week-old mice all matrilins are only weakly expressed.  相似文献   

15.
Periostin is predominantly expressed in collagen-rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross-linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues.  相似文献   

16.
Latent transforming growth factor beta-binding protein 1 (LTBP-1) targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Fibrillins are extracellular matrix macromolecules whose primary function is architectural: fibrillins assemble into ultrastructurally distinct microfibrils that are ubiquitous in the connective tissue space. LTBPs and fibrillins are highly homologous molecules, and colocalization in the matrix of cultured cells has been reported. To address whether LTBP-1 functions architecturally like fibrillins, microfibrils were extracted from tissues and analyzed immunochemically. In addition, binding studies were conducted to determine whether LTBP-1 interacts with fibrillins. LTBP-1 was not detected in extracted beaded-string microfibrils, suggesting that LTBP-1 is not an integral structural component of microfibrils. However, binding studies demonstrated interactions between LTBP-1 and fibrillins. The binding site was within three domains of the LTBP-1 C terminus, and in fibrillin-1 the site was defined within four domains near the N terminus. Immunolocalization data were consistent with the hypothesis that LTBP-1 is a fibrillin-associated protein present in certain tissues but not in others. In tissues where LTBP-1 is not expressed, LTBP-4 may substitute for LTBP-1, because the C-terminal end of LTBP-4 binds equally well to fibrillin. A model depicting the relationship between LTBP-1 and fibrillin microfibrils is proposed.  相似文献   

17.
In works already published, it was made clear that many researches were interested in the absorption phenomena, permeability and structure of the visceral mesothelial tissue. Attention was concentrated on the mesentery and observations were made using the application of lanthanum nitrate and osmium-amine. The penetration of lanthanum nitrate is impeded by the basement membrane situated between the connective and mesothelial tissues. The heavy salt moves through and not between the mesothelial cells by passive diffusion. No reaction was observed in general with osmium-amine, with the exception of a few cases. In those instances, the osmium-amine reacted not only in the outer surface of the mesentery, but also penetrated with no visible reaction all the way to the connective tissue where it was detected in the elastic layer. In this paper, the colloidal iron was employed using different techniques, and depositions were detected in the surface of the mesentery, in the mesothelial cells and also in the connective tissue. A final conclusion that the permeability of different layers of tissues is of great variety and has a definite capacity for selectivity is suggested.  相似文献   

18.
Summary Bone sialoprotein (BSP) is a prominent component of bone tissues that is expressed by differentiated osteoblastic cells. Affinity-purified antibodies to BSP were prepared and used in combination with biotin-conjugated peroxidase-labeled second antibodies to demonstrate the distribution of this protein in sections of demineralized foetal porcine tibia and calvarial bone. Staining for BSP was observed in the matrix of mineralized bone and also in the mineralized cartilage and associated cells of the epiphysis, but was not observed in the hypertrophic zone nor in any of the soft tissues including the periosteum. In comparison, SPP-1 (osteopontin) and SPARC (osteonectin), which are also major proteins in porcine bone, were observed in the cartilage as well as in the mineralized bone matrix, In addition, SPARC was also present in soft connective tissues. Although SPP-1 distribution was more restricted than SPARC, hypertrophic chondrocytes, periosteal cells and some stromal cells in the bone marrow spaces were stained in addition to osteoblastic cells. The variations in the distribution and cellular expression of BSP, SPARC and SPP-1 in bone and mineralizing cartilage indicate these proteins perform different functions in the formation and remodelling of mineralized connective tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号