首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soils that are physically disturbed are often reported to show net nitrification and NO3 loss. To investigate the response of soil N cycling rates to soil mixing, we assayed gross rates of mineralization, nitrification, NH4+ consumption, and NO3 consumption in a suite of soils from eleven woody plant communities in Oregon, New Mexico, and Utah. Results suggest that the common response of net NO3 flux from disturbed soils is not a straightforward response of increased gross nitrification, but instead may be due to the balance of several factors. While mineralization and NH4+ assimilation were higher in mixed than intact cores, NO3 consumption declined. Mean net nitrification was 0.12 mg N kg−1 d−1 in disturbed cores, which was significantly higher than in intact cores (−0.19 mg N kg−1 d−1). However, higher net nitrification rates in disturbed soils were due to the suppression of NO3 consumption, rather than an increase in nitrification. Our results suggest that at least in the short term, disturbance may significantly increase NO3 flux at the ecosystem level, and that N cycling rates measured in core studies employing mixed soils may not be representative of rates in undisturbed soils.  相似文献   

2.

Background and aims

Changes in soil moisture availability seasonally and as a result of climatic variability would influence soil nitrogen (N) cycling in different land use systems. This study aimed to understand mechanisms of soil moisture availability on gross N transformation rates.

Methods

A laboratory incubation experiment was conducted to evaluate the effects of soil moisture content (65 vs. 100% water holding capacity, WHC) on gross N transformation rates using the 15N tracing technique (calculated by the numerical model FLUAZ) in adjacent grassland and forest soils in central Alberta, Canada.

Results

Gross N mineralization and gross NH 4 + immobilization rates were not influenced by soil moisture content for both soils. Gross nitrification rates were greater at 100 than at 65% WHC only in the forest soil. Denitrification rates during the 9 days of incubation were 2.47 and 4.91 mg N kg-1 soil d-1 in the grassland and forest soils, respectively, at 100% WHC, but were not different from zero at 65% WHC. In the forest soil, both the ratio of gross nitrification to gross NH 4 + immobilization rates (N/IA) and cumulative N2O emission were lower in the 65 than in the 100% WHC treatment, while in the grassland soil, the N/IA ratio was similar between the two soil moisture content treatments but cumulative N2O emission was lower at 65% WHC.

Conclusions

The effect of soil moisture content on gross nitrification rates differ between forest and grassland soils and decreasing soil moisture content from 100 to 65% WHC reduced N2O emissions in both soils.  相似文献   

3.
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO3 ?-N and total inorganic N concentrations than pasture soils, but substantial NO3 ?-N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.  相似文献   

4.
The effects of forest management (thinning) on gross and net N conversion, the balance of inorganic N production and consumption, inorganic N concentrations and on soil microbial biomass in the Ah layer were studied in situ during eight intensive field measuring campaigns in the years 2002–2004 at three beech (Fagus sylvatica L.) forest sites. At all sites adjacent thinning plots (“T”) and untreated control plots (“C”) were established. Since the sites are characterized either by cool-moist microclimate (NE site and NW site) or by warm-dry microclimate (SW site) and thinning took place in the year 1999 at the NE and SW sites and in the year 2003 at the NW site the experimental design allowed to evaluate (1) short-term effects (years 1–2) of thinning at the NW site and (2) medium-term effects (years 4–6) of thinning under different microclimate at the SW and NE site. Microbial biomass N was consistently higher at the thinning plots of all sites during most of the field campaigns and was overall significantly higher at the SWT and NWT plots as compared to the corresponding untreated control plots. The size of the microbial biomass N pool was found to correlate positively with both gross ammonification and gross nitrification as well as with extractable soil NO3 concentrations. At the SW site neither gross ammonification, gross nitrification, gross ammonium (NH4+) immobilization and gross nitrate (NO3) immobilization nor net ammonification, net nitrification and extractable NH4+ and NO3 contents were significantly different between control and thinning plot. At the NET plot lower gross ammonification and gross NH4+ immobilization in conjunction with constant nitrification rates coincided with higher net nitrification and significantly higher extractable NO3 concentrations. Thus, the medium-term effects of thinning varied with different microclimate. The most striking thinning effects were found at the newly thinned NW site, where gross ammonification and gross NH4+ immobilization were dramatically higher immediately after thinning. However, they subsequently tended to decrease in favor of gross nitrification, which was significantly higher at the NWT plot as compared to␣the␣NWC plot during all field campaigns after␣thinning except for April 2004. This increase␣in␣gross nitrification at the NWT plot (1.73 mg N kg−1 sdw day−1 versus 0.48 mg N kg−1 sdw day−1 at the NWC plot) coincided with significantly higher extractable NO3 concentrations (4.59 mg N kg−1 sdw at the NWT plot versus 0.96 mg N kg−1 sdw at the NWC plot). Pronounced differences in relative N retention (the ratio of gross NH4+ immobilization + gross NO3 immobilization to gross ammonification + gross nitrification) were found across the six research plots investigated and could be positively correlated to the soil C/N ratio (R = 0.94; p = 0.005). In sum, the results obtained in this study show that (1) thinning can lead to a shift in the balance of microbial inorganic N production and consumption causing a clear decrease in the N retention capacity in the monitored forest soils especially in the first two years after thinning, (2)␣the resistance of the investigated forest ecosystems to disturbances of N cycling by thinning may vary with different soil C contents and C/N ratios, e. g. caused by differences in microclimate, (3) thinning effects tend to decline with the growth of understorey vegetation in the years 4–6 after thinning.  相似文献   

5.
Net N mineralization, nitrification, microbial biomass N and 15N natural abundance were studied in a toposequence of representative soils and plant communities in the alpine zone of the northern Caucasus. The toposequence was represented by (1) low-productive alpine lichen heath (ALH) of wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of middle slope; (3) most productive Geranium gymnocaulon/Hedusarum caucasicummeadow (GHM) of lower slope; (4) low-productive snowbed community (SBC) of the slope bottom. N availability, net N mineralization and nitrification were higher in soils of alpine grassland and meadow of the middle part of the toposequence compared with soils of lichen heath and snowbed community of extreme habitats in the alpine zone. There was no correlation between intensities of N transformation processes and favorable (low soil acidity, low C/N ratio, long vegetation period, relatively high temperature, absence of hydromorphic features) and unfavorable (opposite) factors, indicating that the intensity of N mineralization and nitrification in the alpine soils is controlled by a complex combination of these factors. Potential net N mineralization and nitrification in alpine soils determined in the short-term laboratory incubation were considerably higher than those determined in the long-term field incubation. The differences of potential nitrification between soils of various plant communities did not correspond to the field determined pattern indicating the importance of on-site climatic conditions for control of nitrification in high mountains. The result of comparison of N transformation potentials in incubated and native soils indicated that nitrification potential was significantly increased after long-term soil incubation. It means that net nitrification determined in the field was probably overestimated, especially in the meadow soils. A soil translocation experiment indicated that low temperature was an important factor limiting net N mineralization and nitrification in alpine soils: net N mineralization and especially nitrification increased when alpine soils were translocated into the subalpine zone and mean annual temperature increased by about 3°C. Additional N input increased N availability (NH4 +-N) and potential nitrification in soils of the lower part of the toposequense (GHM and SBC), and potential net N mineralization in two soils of extreme habitats (ALH and SBC). A positive correlation was found between soil 15N and net N mineralization and nitrification; the relative 15N enrichment was characteristic of grassland and meadow ecosystems. 15N of total soil N pool increased during the field mineralization experiment; there was a positive tendency between the change in 15N and net N mineralization and nitrification, however the relationship was not significant. Foliar 15N of dominant plant species varied widely within community, however, a tendency of higher foliar 15N for species growing on the soils with higher net N mineralization, nitrification and 15N was observed.  相似文献   

6.
Wildfires have shaped the biogeography of south Chilean Araucaria–Nothofagus rainforest vegetation patterns, but their impact on soil properties and associated nutrient cycling remains unclear. Nitrogen (N) availability shows a site‐specific response to wildfire events indicating the need for an increased understanding of underlying mechanisms that drive changes in soil N cycling. In this study, we selected unburned and burned sites in a large area of the National Park Tolhuaca that was affected by a stand‐replacing wildfire in February 2002. We conducted net N cycling flux measurements (net ammonification, net nitrification and net N mineralization assays) on soils sampled 3 years after fire. In addition, samples were physically fractionated and natural abundance of C and N, and 13C‐NMR analyses were performed. Results indicated that standing inorganic N pools were greater in the burned soil, but that no main differences in net N cycling fluxes were observed between unburned and burned sites. In both sites, net ammonification and net nitrification fluxes were low or negative, indicating N immobilization. Multiple linear regression analyses indicated that soil N cycling could largely be explained by two parameters: light fraction (LF) soil organic matter N content and aromatic Chemical Oxidation Resistant Carbon (CORECarom), a relative measure for char. The LF fraction, a strong NH4+ sink, decreased as a result of fire, while CORECarom increased in the burned soil profile and stimulated NO3 production. The absence of increased total net nitrification might relate to a decrease in heterotrophic nitrification after wildfire. We conclude that (i) wildfire induced a shift in N transformation pathways, but not in total net N mineralization, and (ii) stable isotope measurements are a useful tool to assess post‐fire soil organic matter dynamics.  相似文献   

7.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

8.
Although it is generally accepted that tree species can influence nutrient cycling processes in soils, effects are not consistently found, nor are the mechanisms behind tree species effects well understood. Our objectives were to gain insights into the mechanism(s) underlying the effects of tree species on soil nitrogen cycling processes, and to determine the consistency of tree species effects across sites. We compared N cycling in soils beneath six tree species (ash, sycamore maple, lime, beech, pedunculate oak, Norway spruce) in common garden experiments planted 42 years earlier at three sites in Denmark with distinct land-use histories (forest and agriculture). We measured: (1) net and gross rates of N transformations using the 15N isotope pool-dilution method, (2) soil microbial community composition through qPCR of fungal ITS, bacterial and archaeal 16S, and (3) abundance of functional genes associated with N cycling processes—for nitrification the archaeal and bacterial ammonia-monooxygenase genes (amoA AOA and amoA AOB, respectively) and for denitrification, the nitrate reductase genes nirK and nirS. Carbon concentrations were higher in soils under spruce than under broadleaves, so N transformation rates were standardized per g soil C. Soil NH4+ parameters (gross ammonification, gross NH4+ consumption, net ammonification (net immobilization in this case), and NH4+ concentrations, per g C) were all lowest in soils under spruce. Soils under spruce also had the lowest gene abundance of bacteria, bacterial:fungal ratio, denitrifying microorganisms, ammonia-oxidizing archaea and ammonia-oxidizing bacteria. Differences in N-cycling processes and organisms among the five broadleaf species were smaller. The ‘spruce effect’ on soil microbes and N transformations appeared to be driven by its acidifying effect on soil and tighter N cycling, which occurred at the previously forested sites but not at the previously agricultural site. We conclude that existing characteristics of soils, including those resulting from previous land use, mediate the effects of tree species on the soil microbial communities and activities that determine rates of N-cycling processes.  相似文献   

9.

Background and aims

Continuous vegetable cultivation in greenhouses can easily induce soil degradation, which considerably affects the development of sustainable vegetable production. Recently, the reductive soil disinfestation (RSD) is widely used as an alternative to chemical soil disinfestations to improve degraded greenhouse vegetable soils. Considering the importance of nitrogen (N) for plant growth and environment effect, the internal N transformation processes and rates should be well investigated in degraded vegetable soils treated by RSD, but few works have been undertaken.

Methods

Three RSD-treated and three untreated degraded vegetable soils were chosen and a 15?N tracing incubation experiment differentially labeled with 15NH4NO3 or NH4 15NO3 was conducted at 25 °C under 50 % water holding capacity (WHC) for 96 h. Soil gross N transformation rates were calculated using a 15?N tracing model combined with Markov Chain Monte Carlo Metropolis algorithm (Müller et al. 2007), while the emissions of N2O and NO were also measured.

Results

RSD could significantly enhance the soil microbial NH4 + immobilization rate, the heterotrophic and autotrophic nitrification rates, and the NO3 ? turnover time. The ratio of heterotrophic nitrification to total inorganic N supply rate (mineralization + heterotrophic nitrification) increased greatly from 5.4 % in untreated vegetable soil to 56.1 % in treated vegetable soil. In addition, low release potential of NO and N2O was observed in RSD-treated vegetable soil, due to the decrease in the NO and N2O product ratios from heterotrophic and autotrophic nitrifications. These significant differences in gross N transformation rates, the supply processes and capacity of inorganic N, and the NO and N2O emissions between untreated and treated vegetable soils could be explained by the elimination of accumulated NO3 ?, increased pH, and decreased electrical conductivity (EC) caused by RSD. Noticeably, the NO3 ? consumption rates were still significantly lower than the NO3 ? production rates in RSD-treated vegetable soil.

Conclusions

Except for improving soil chemical properties, RSD could significantly alter the supply processes of inorganic N and reduce the release potential of N2O and NO in RSD-treated degraded vegetable soil. In order to retard the re-occurrence of NO3 ? accumulation, acidification and salinization and to promote the long-term productivity of greenhouse vegetable fields, the rational use of N fertilizer should be paid great attention to farmers in vegetable cultivation.  相似文献   

10.

Background and aims

Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan.

Methods

At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO 3 ? -N) use traits, and compared the results with the soil traits.

Results

Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO 3 ? -N. Pieris japonica lacks the capacity to use NO 3 ? -N as a N source, but other species do use NO 3 ? -N. Lindera triloba, whose distribution is unrelated to soil NO 3 ? -N availability, changes the extent to which it uses NO 3 ? -N in response to soil NO 3 ? -N availability.

Conclusions

Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO 3 ? -N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions.  相似文献   

11.
The exotic annual grass Bromus tectorum has replaced thousands of hectares of native perennial vegetation in semi-arid ecosystems of the western United States. Inorganic N availability and production were compared in soil from monodominant patches of Bromus tectorum, the perennial bunchgrass Elymus elymoides, and the shrub Artemisia tridentata, in Curlew Valley, a salt-desert shrub site in Northern Utah. Bromus-dominated soil had greater %N in the top 10 cm than Artemisia or Elymus-dominated soils. As determined by spring isotope-dilution assays, gross mineralization and nitrification rates were higher in Bromus-dominated than Artemisia-dominated soils, but gross rates of NH4 + and NO3 consumption were also higher. Litterbags had greater mass loss and N mineralization when buried in Bromus stands than in Artemisia stands, indicating the soil environment under the annual grass promotes decomposition. As determined by nitrification potential assays, nitrifier populations were higher under Bromus than under Artemisia and Elymus. Soil inorganic N concentrations were similar among vegetation types in the spring, but NO3 accumulated under Bromus once it had senesced. An in situ net mineralization assay conducted in autumn indicated that germinating Bromus seedlings are a strong sink for soil NO3 , and that net nitrification is inherently low in soils under Artemisia and Elymus. Results of the study suggest that differences in plant uptake and the soil environment promote greater inorganic N availability under Bromus than under perennial species at the site.  相似文献   

12.

Aim

There is interest in determining how cheatgrass (Bromus tectorum L.) modifies N cycling in sagebrush (Artemisia tridentata Nutt.) soils of the western USA.

Methods

To gain insight into the roles of fungi and bacteria in N cycling of cheatgrass-invaded and uninvaded sagebrush soils, the fungal protein synthesis inhibitor, cycloheximide (CHX), and the bacteriocidal compound, bronopol (BRO) were combined with a 15NH4 + isotope pool dilution approach.

Results

CHX reduced gross N mineralization to the same rate in both sagebrush and cheatgrass soils indicating a role for fungi in N mineralization in both soil types. In cheatgrass soils BRO completely inhibited gross N mineralization, whereas, in sagebrush soils a BRO-resistant gross N mineralization rate was detected that was slower than CHX sensitive gross N mineralization, suggesting that the microbial drivers of gross N mineralization were different in sagebrush and cheatgrass soils. Net N mineralization was stimulated to a higher rate in sagebrush than in cheatgrass soils by CHX, implying that a CHX inhibited N sink was larger in the former than the latter soils. Initial gross NH4 + consumption rates were reduced significantly by both CHX and BRO in both soil types, yet, consumption rates recovered significantly between 24 and 48 h in CHX-treated sagebrush soils. The recovery of NH4 + consumption in sagebrush soils corresponded with an increase in the rate of net nitrification.

Conclusions

These results suggest that cheatgrass invasion of sagebrush soils of the northern Great Basin reduces the capacity of the fungal N consumption sink, enhances the capacity of a CHX resistant N sink and alters the contributions of bacteria and fungi to gross N mineralization.
  相似文献   

13.
Crowley  D. E.  Wu  C. L.  Gries  D.  Brünn  S.  Parker  D. R. 《Plant and Soil》2002,241(1):57-65
A laboratory method was developed that allows determination of in situ net nitrification with high sensitivity and at high temporal resolution. Nitrate in soils is quantitatively converted into nitrous oxide under strictly anaerobic conditions in the presence of 10 kPa acetylene by the soil endogenous denitrifier population, with the N2O detected by a gas chromatograph equipped with a 63Ni electron capture detector. Thus, even low net nitrification rates, i.e. small net increases in soil nitrate concentrations can easily be detected. Comparison of results using this method with results obtained using the classical in situ incubation method (buried bag soil incubation) revealed excellent agreement. Application of the new method allowed both determination of the seasonal pattern of net nitrification as well as correlation analysis between in situ NO and N2O flux rates and in situ net nitrification rates of the forest soils studied. Regardless of the forest site studied (spruce, spruce limed, beech), and during each year of a 3 years period (1995–1997), net nitrification varied strongly with season and was least during winter and greatest during summer. The long-term annual, mean rate of net nitrification for the untreated spruce site, the limed spruce site and the beech site were 1.54 ± 0.27 mg N kg–1 sdw d–1, 1.92 ± 0.23 mg N kg–1 sdw d–1 and 1.31 ± 0.23 mg N kg–1 sdw d–1, respectively. In situ rates of nitrification and NO and N2O emission were strongly correlated for all sites suggesting that nitrification was the dominate source of NO as well as N2O.  相似文献   

14.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

15.
Combined measurements of nitrification activity and N2O emissions were performed in a lowland and a montane tropical rainforest ecosystem in NE-Australia over a 18 months period from October 2001 until May 2003. At both sites gross nitrification rates, measured by the BaPS technique, showed a strong seasonal pattern with significantly higher rates of gross nitrification during wet season conditions. Nitrification rates at the montane site (1.48?±?0.24–18.75?±?2.38 mg N kg?1 day?1) were found to be significantly higher than at the lowland site (1.65?±?0.21–4.54?±?0.27 mg N kg?1 day?1). The relationship between soil moisture and gross nitrification rates could be described best by O’Neill functions having a soil moisture optimum of nitrification at app. 65% WFPS. At the lowland site, for which continuous measurements of N2O emissions were available, nitrification was positively correlated with N2O emission. Nitrification contributed significantly to N2O formation during dry season (app.85%) but less (app. 30%) during wet season conditions. In average 0.19‰ of the N metabolized by nitrification was released as N2O. The N2O fraction loss for nitrification was positively correlated with changes in soil moisture and varied slightly between 0.15 and 0.22‰. Our results demonstrate that combined N2O emission and microbial N turnover studies covering prolonged observation periods are needed to clarify and quantify the role of the microbial processes nitrification and denitrification for annual N2O emissions from soils of terrestrial ecosystems.  相似文献   

16.
To examine the influence of microbial carbon (C) availability on the internal soil nitrogen (N) cycles under moder and mull forest floor types within the same slope sequence, surface mineral soils (0–5cm depth) taken at upper (moder-type forest floor) and lower (mull-type forest floor) positions on a slope in a Cryptomeria japonica D. Don plantation were incubated for 300days. During the incubation, changes in net and gross N transformations, the organic C and N pools, and microbial respiration were monitored. Despite relatively small differences in net N mineralization in both soils, very rapid rates of gross N transformations were found in mull soil during the initial 15days of the experiment. A rapid net nitrification occurred after days 150 and 100 in moder and mull soils, respectively, presumably because of decreased microbial C availability. However, a rapid net nitrification also occurred in the mull soil during the initial 15days when microbial C availability was high, and gross nitrification was detected in both soils, except at day 0 in the moder soil. Changes in gross N transformations and in organic C and N pools over the experiment suggested that the start of rapid net nitrification might be influenced not only by microbial C availability, but also by the microbial availability of N relative to C.  相似文献   

17.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   

18.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

19.
Summary Net mineralization of N and net nitrification in field-moist clay soils (Evesham-Kingston series) from arable and grassland sites were measured in laboratory incubation experiments at 4, 10 and 20°C. Three depth fractions to 30 cm were used. Nitrate accumulated at all temperatures except when the soil was very dry (=0.13 cm3 cm–3). Exchangeable NH4-ions declined during the first 24 h and thereafter remained low. Net mineralization and net nitrification approximated to zero-order reactions after 24 h, with Q10 values generally <1.6. The effect of temperature on both processes was linear although some results conformed to an Arrhenius-type relationship. The dependence of net mineralization and net nitrification in the field soil on soil temperature (10 cm depth) and moisture (0–15, 15–25, 25–35 cm depths) was modelled using the laboratory incubation data. An annual net mineralization of 350 kg N ha–1 and net nitrification of 346 kg N ha–1 were predicted between September 1980 and August 1981. The model probably overstressed the effect of soil moisture relative to soil temperature.  相似文献   

20.
Sampling disturbance has been shown to rapidly increase net nitrification rates in some forest soils. To gain insight on mechanisms, we investigated both gross and net rates of ammonification and nitrification in intact cores and mixed composite samples. Using the isotope pool dilution method, we studied samples from two northeastern USA watersheds, Brush Brook and Sleepers River in Vermont, where previous work had found high net nitrification rates. Gross ammonification was usually not significantly different between intact cores and mixed samples. However, gross and net nitrification rates in mixed samples were similar (mean ~24?µmol N?kg?1?hr?1 or ~8 mg N kg?1 d?1) and significantly higher than in intact cores (7.7 and 3.4?µmol N kg?1?h?1 for means of gross and net respectively). Nitrate consumption was decreased somewhat by disturbance but did not account for the large differences in net rates. Because there were similar gross ammonification rates in both treatments, increased nitrification in these disturbed soils must be a result of an increase in the utilization of ammonium by the ammonia oxidizers at the expense of other ammonium consumption pathways. Different mechanisms may operate in different soils; increased nitrification appears to be the primary pathway in these soils with high N cycling rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号