首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.  相似文献   

3.
4.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

5.
6.
Apoptotic nuclear morphological change without DNA fragmentation.   总被引:8,自引:0,他引:8  
Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by apoptotic stimuli [8] cleave ICAD. CAD, thus released from ICAD, digests chromosomal DNA into nucleosomal units [2] [3]. Here, we examine whether nuclear morphological changes induced by apoptotic stimuli are caused by the degradation of chromosomal DNA. Human T-cell lymphoma Jurkat cells, as well as their transformants expressing caspase-resistant ICAD, were treated with staurosporine. The chromosomal DNA in Jurkat cells underwent fragmentation into nucleosomal units, which was preceded by large-scale chromatin fragmentation (50-200 kb). The chromosomal DNA in cells expressing caspase-resistant ICAD remained intact after treatment with staurosporine but their chromatin condensed as found in parental Jurkat cells. These results indicate that large-scale chromatin fragmentation and nucleosomal DNA fragmentation are caused by an ICAD-inhibitable DNase, most probably CAD, whereas chromatin condensation during apoptosis is controlled, at least in part, independently from the degradation of chromosomal DNA.  相似文献   

7.
8.
Histone structure and nucleosome stability   总被引:1,自引:0,他引:1  
  相似文献   

9.
More than half of the DNA polymerase beta in mouse ascites cell chromatin was found to be associated with monomeric nucleosomal particles (produced by micrococcal nuclease treatment of chromatin). Almost all nuclear DNA polymerase activity in lymphocytes was found to be associated with nucleosomes. The nucleosome-associated enzyme was mainly DNA polymerase beta in chromatin from resting and mainly DNA polymerase alpha in chromatin from concanavalin-A-stimulated lymphocytes.  相似文献   

10.
W A Krajewski 《FEBS letters》1999,452(3):215-218
DNA within chromatin has considerably more restricted flexibility in comparison with naked DNA. This raises the main question of how the functioning multi-enzyme complexes overcome the nucleosomal level of DNA packaging. We studied the DNA conformational flexibility of reconstituted chromatin in a cell-free system derived from Drosophila embryo extracts. Using this system, we have found evidence for a energy-independent chromatin remodelling process that efficiently destabilizes the nucleosome structure resulting in a high conformational flexibility of nucleosomal DNA. The described chromatin remodelling process may lay on the basis of defined molecular principles governing the molecular heterogeneity of chromatin structures in vivo.  相似文献   

11.
12.
13.
The bacterial methylases M. Eco RII and M. Eco dam can methylate DNA in rat liver chromatin to form the 5-methylcytosine (m5C) and N6-methyladenine (m6A) residues, respectively. The CH3-accepting capacity of DNA in chromatin (mono- and dinucleosomes, mono- and dinucleomers) is 15 - 30 times less than that of free total DNA in rat liver. Such a low level of DNA methylation in chromatin in vitro suggests that the accessibility and recognition of methylation sites by DNA-methylases are decreased in comparison with free DNA both in the core-particle DNA and in the internucleosomal DNA. The degree of DNA methylation in chromatin particles depends on the ionic strength and Mg2+; when the former is decreased from 0.515 down to 0.176, the DNA methylation by both enzymes is increased 2-fold. An addition of Mg2+ (1 - 2 mM) decreases the CH3-accepting capacity of nucleomeric DNA, that of nucleosomal DNA remains unchanged. Thus, the accessibility of DNA for methylases is variable depending on the conformational changes of chromatin. The values of the m6A to m5C ratio for free and nucleosomal DNAs formed by methylation with a methylation of nucleomeric DNA, i. e. 1.01, 0.92 and 0.51, respectively. As Mg/4 concentration rises, the m6A/m5C ratio for nucleosomal and nucleomeric DNA is increased. It seems therefore that at different levels of organization and upon certain conformation changes the number and, probably, the nature of exposed DNA methylation sites in chromatin are different. Bacterial DNA-methylases can be used as an effective probe for a fine analysis of chromatin ultrastructure, in particular at its different functional states.  相似文献   

14.
15.
Properties of condensed residual chromatin of mouse spleen, a component of residual nuclear structures, were studied. Extraction of the structures with buffers of different NaCl concentrations showed that the condensed chromatin consists of condensed nucleosomal chains. On increasing the ionic strength the complexes gradually fell apart into separate nucleosomal chains. DNA of condensed chromatin was accessible to staphylococcal nuclease and DNAase I, but digestion of this DNA was not accompanied by solubilization of the residual chromatin. Besides the essentially decreased total content of nonhistone chromosomal proteins the condensed chromatin practically did not contain HMG proteins. The nucleosome repeat length of this chromatin was shorter than that of chromatin solubilized by staphylococcal nuclease.  相似文献   

16.
The structure of metaphase chromatin in a human tumor cell line, TG cells, was investigated using thin sections selectively stained for DNA with the Feulgen-like osmium-ammine reaction. The bulk of metaphase chromatin was characterized by the nucleosomal configuration. Some specimens were pretreated by silver staining for selective visualization of acidic proteins of the nucleolar organizer regions. In these specimens, the osmium-amine DNA tracer revealed that the chromatin present at the sites of silver granule localization had a completely extended configuration, and never gave rise to nucleosomal structures.  相似文献   

17.
18.
The effect of chromatin structure on the extent of radiation damage induced by low doses of 100 KeV X rays was investigated using a fluorescent assay for DNA unwinding. Chromatin was isolated from V-79 Chinese hamster lung fibroblast nuclei by partial digestion with micrococcal nuclease. Gel electrophoresis of the isolated DNA showed the molecular weight of the chromatin preparation to be 10.6 X 10(6) with a size range of 6.6-21.7 X 10(6) Da while a size of 10.2 +/- 0.9 X 10(6) Da was found by sedimenting the DNA in alkaline sucrose gradients. The repeat length of V-79 chromatin was found to be 194 +/- 3 bp. The typical nucleosomal repeat structure of the isolated chromatin and that of intact nuclei was identical. Irradiation with 50 and 100 Gy of 100 KeV X rays and analysis by alkaline sucrose density centrifugation indicated that V-79 chromatin sustained 0.56 +/- 0.19 and 0.69 +/- 0.09 single-strand breaks per 10 Gy per 10(8) Da of DNA, respectively. Irradiation with doses of 0.5-3.0 Gy of 100 KeV X rays and analysis by the fluorometric assay showed that the radiation sensitivity of V-79 chromatin decreases sharply on compaction with MgCl2. Histone H1 depletion, which inhibits compaction and causes chromatin to expand by increasing the linker from 26 to 48 bp, results in a considerable increase in the radiation sensitivity. It is concluded that radiation damage sustained by DNA is greatly influenced by chromatin structure.  相似文献   

19.
Telomeric chromatin has different features with respect to bulk chromatin, since nucleosomal repeat along the chain is unusually short. We studied the role of telomeric DNA sequences on nucleosomal spacing in a model system. Nucleosomal arrays, assembled on a 1500-bp-long human telomeric DNA and on a DNA fragment containing 8 copies of the 601 strong nucleosome positioning sequence, have been studied at the single molecule level, by atomic force microscopy imaging. Random nucleosome positioning was found in the case of human telomeric DNA. On the contrary, nucleosome positioning on 601 DNA is characterized by preferential positions of nucleosome dyad axis each 200 bp. The AFM-derived nucleosome organization is in satisfactory agreement with that predicted by theoretical modeling, based on sequence-dependent DNA curvature and flexibility. The reported results show that DNA sequence has a main role, not only in mononucleosome thermodynamic stability, but also in the organization of nucleosomal arrays.  相似文献   

20.
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from ∼ 3-fold decreases to ∼ 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as ∼ 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号