首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars.  相似文献   

2.
RFLP linkage map and genome analysis of Saccharum spontaneum.   总被引:5,自引:0,他引:5  
An RFLP linkage map of the wild sugarcane species Saccharum spontaneum L. (2n = 8x = 40-128) was constructed, comprising 216 loci, detected by 116 DNA probes, and distributed over 44 linkage groups. At a density of at least one marker every 25-cM interval, the coverage of the genome was estimated as 86%. For the generation of RFLP markers, probes were surveyed from seven DNA libraries: three sugarcane cDNA, one oat cDNA, one rice cDNA, and one barley cDNA, as well as one sugarcane genomic. Sixty-two maize genomic clones that were previously mapped on maize were used to initiate a comparative map between the sugarcane, sorghum, and maize genomes. Based on the RFLP segregation data, we conclude that this species is an autopolyploid, with an estimated genome size of 2107 cM.  相似文献   

3.
Analysis of a 120-Kilobase Mitochondrial Chromosome in Maize   总被引:4,自引:2,他引:2       下载免费PDF全文
A. A. Levy  C. P. Andre    V. Walbot 《Genetics》1991,128(2):417-424
The organization of the mitochondrial genome in plants is not well understood. In maize mitochondrial DNA (mtDNA) several subgenomic circular molecules as well as an abundant fraction of linear molecules have been seen by electron microscopy. It has been hypothesized that the circular molecules are the genetic entities of the mitochondrial genome while the linear molecules correspond to randomly sheared mtDNA. A model has been proposed that explains the mechanism of generation of subgenomic circles (of a predictable size) by homologous recombination between pairs of large direct repeats found on a large (approximately 570 kb for the fertile (N) cytoplasm) master circle. So far the physical entities of the mitochondrial genome, as they exist in vivo, and the genes they carry, have not been identified. For this purpose, we used two gel systems (pulsed field gel electrophoresis and Eckhardt gels) designed to resolve large DNA. Large DNA was prepared from the Black Mexican Sweet (BMS) cultivar. We resolved several size classes of mtDNA circles and designate these as chromosomes. A 120 kb chromosome was mapped in detail. It is shown to contain the three ribosomal genes (rrn26, rrn18 and rrn5) plus two genes encoding subunits of cytochrome oxidase (Cox1 and Cox3); it appears to be colinear with the 570-kb master circle map of another fertile cytoplasm (B37N) except at the "breakpoints" required to form the 120-kb circle. The presence of the 120-kb chromosome could not have been predicted by homologous recombination through any of the known repetitive sequences nor is it a universal feature of normal maize mitochondria. It is present in mitochondria of BMS suspension cultures and seedlings, but is not detectable in seedlings of B37N. No master genome was detected in BMS.  相似文献   

4.
Plant, and particularly cereal genomes, are challenging to sequence due to their large size and high repetitive DNA content. Gene-enrichment strategies are alternative or complementary approaches to complete genome sequencing that yield, rapidly and inexpensively, useful sequence data from large and complex genomes. The maize genome is large (2.7 Gbp) and contains large amounts of conserved repetitive elements. Furthermore, the high allelic diversity found between maize inbred lines may necessitate sequencing several inbred lines in order to recover the maize "gene pool". Two gene-enrichment approaches, methylation filtration (MF) and high C(o)t (HC) sequencing have been tested in maize and their ability to sample the gene space has been examined. Combined with other genomic sequencing strategies, gene-enriched genomic sequencing is a practical way to examine the maize gene pool, to order and orient the genic sequences on the genome, and to enable investigation of gene content of other complex plant genomes.  相似文献   

5.
A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.  相似文献   

6.

Background  

Repeat-rich regions such as centromeres receive less attention than their gene-rich euchromatic counterparts because the former are difficult to assemble and analyze. Our objectives were to 1) map all ten centromeres onto the maize genetic map and 2) characterize the sequence features of maize centromeres, each of which spans several megabases of highly repetitive DNA. Repetitive sequences can be mapped using special molecular markers that are based on PCR with primers designed from two unique "repeat junctions". Efficient screening of large amounts of maize genome sequence data for repeat junctions, as well as key centromere sequence features required the development of specific annotation software.  相似文献   

7.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

8.
Sorghum is an important target of plant genomics. This cereal has unusual tolerance to adverse environments, a small genome (750 Mbp) relative to most other grasses, a diverse germplasm, and utility for comparative genomics with rice, maize and other grasses. In this study, a modified cDNA selection protocol was developed to aid the discovery and mapping of genes across an integrated genetic and physical map of the sorghum genome. BAC DNA from the sorghum genome map was isolated and covalently bound in arrayed tubes for efficient liquid handling. Amplifiable cDNA sequence tags were isolated by hybridization to individual sorghum BACs, cloned and sequenced. Analysis of a fully sequenced sorghum BAC indicated that about 80% of known or predicted genes were detected in the sequence tags, including multiple tags from different regions of individual genes. Data from cDNA selection using the fully sequenced BAC indicate that the occurrence of mislocated cDNA tags is very low. Analysis of 35 BACs (5.25 Mb) from sorghum linkage group B revealed (and therefore mapped) two sorghum genes and 58 sorghum ESTs. Additionally, 31 cDNA tags that had significant homologies to genes from other species were also isolated. The modified cDNA selection procedure described here will be useful for genome-wide gene discovery and EST mapping in sorghum, and for comparative genomics of sorghum, rice, maize and other grasses.  相似文献   

9.
The pattern of genome organization of Zea mays has been analyzed, and the relationship of maize to possible progenitor species assessed by DNADNA hybridization. Reassociation of 470 and 1,350 bp fragments of maize DNA to various C0t values demonstrates that the genome is composed of 3 major kinetic classes: highly repetitive, mid-repetitive, and unique. Mini-C0t curves of the repetitive sequences at short fragment length indicate that the highly repetitive sequence class is 20% of the genome and is present at an average reiteration frequency of 800,000 copies; the mid-repetitive sequence class is 40% of the genome and is present at an average reiteration frequency of 1,000 copies. Thermal denaturation studies show that the highly repetitive sequences are 12% divergent and mid-repetitive sequences are 6% divergent. Most of the genome is organized in two interspersion patterns. One, approximately one-third of the genome, is composed of unique sequences of average length 2,100 bp interspersed with mid-repetitive sequences; the other, also one-third of the genome, is mid-repetitive sequences interspersed with highly repetitive sequences. The repetitive sequences are 500 to 1,000 bp by electron microscopic measurement. The remaining third of the genome is unique sequences farther than 5,000 bp from a palindromic or repetitive sequence. Hybridization of maize DNA from Midwestern Dent to popcorn and related grasses indicates that both the unique and repetitive sequence elements have diverged. Teosinte and popcorn are approximately equally divergent from Midwestern Dent whereas Tripsacum is much more divergent. The divergence times calculated from the depression of Tm in heterologous duplexes indicate that the divergence within Zea mays and between maize and near relatives is at least an order of magnitude greater than expected. This high degree of divergence may reflect the pressures of domestication of maize.  相似文献   

10.
A physical map of the genome of Drosophila melanogaster has been created using 965 yeast artificial chromosome (YAC) clones assigned to locations in the cytogenetic map by in situ hybridization with the polytene salivary gland chromosomes. Clones with insert sizes averaging about 200 kb, totaling 1.7 genome equivalents, have been mapped. More than 80% of the euchromatic genome is included in the mapped clones, and 75% of the euchromatic genome is included in 161 cytological contigs ranging in size up to 2.5 Mb (average size 510 kb). On the other hand, YAC coverage of the one-third of the genome constituting the heterochromatin is incomplete, and clones containing long tracts of highly repetitive simple satellite DNA sequences have not been recovered.  相似文献   

11.
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.  相似文献   

12.
Fluorescent-based high-information-content fingerprinting (HICF) techniques have recently been developed for physical mapping. These techniques make use of automated capillary DNA sequencing instruments to enable both high-resolution and high-throughput fingerprinting. In this article, we report the construction of a whole-genome HICF FPC map for maize (Zea mays subsp. mays cv B73), using a variant of HICF in which a type IIS restriction enzyme is used to generate the fluorescently labeled fragments. The HICF maize map was constructed from the same three maize bacterial artificial chromosome libraries as previously used for the whole-genome agarose FPC map, providing a unique opportunity for direct comparison of the agarose and HICF methods; as a result, it was found that HICF has substantially greater sensitivity in forming contigs. An improved assembly procedure is also described that uses automatic end-merging of contigs to reduce the effects of contamination and repetitive bands. Several new features in FPC v7.2 are presented, including shared-memory multiprocessing, which allows dramatically faster assemblies, and automatic end-merging, which permits more accurate assemblies. It is further shown that sequenced clones may be digested in silico and located accurately on the HICF assembly, despite size deviations that prevent the precise prediction of experimental fingerprints. Finally, repetitive bands are isolated, and their effect on the assembly is studied.  相似文献   

13.
We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.  相似文献   

14.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

15.
We have isolated four repetitive DNA fragments from maize DNA. Only one of these sequences showed homology to sequences within the EMBL database, despite each having an estimated copy number of between 3 x 104 and 5 x 104 per haploid genome. Hybridization of the four repeats to maize mitotic chromosomes showed that the sequences are evenly dispersed throughout most, but not all, of the maize genome, whereas hybridization to yeast colonies containing random maize DNA fragments inserted into yeast artificial chromosomes (YACs) indicated that there was considerable clustering of the repeats at a local level. We have exploited the distribution of the repeats to produce repetitive sequence fingerprints of individual YAC clones. These fingerprints not only provide information about the occurrence and organization of the repetitive sequences within the maize genome, but they can also be used to determine the organization of overlapping maize YAC clones within a contiguous fragment (contigs). Key words : maize, repetitive DNA, YACs.  相似文献   

16.
In an attempt to unify the genetic and biological research on Mycobacterium leprae, the aetiological agent of leprosy, a cosmid library was constructed and then ordered by a combination of fingerprinting and hybridization techniques. The genome of M. leprae is represented by four contigs of overlapping clones which, together, account for nearly 2.B Mb of DNA. Several arguments suggest that the gaps between the contigs are small in size and that virtually complete coverage of the chromosome has been obtained. All of the cloned M. leprae genes have been positioned on the contig maps together with the 29 copies of the dispersed repetitive element, RLEP. These have been classified into four groups on the basis of differences in their organization. Several key housekeeping genes were identified and mapped by hybridization with heterologous probes, and the current genome map of this uncultivable pathogen comprises 72 loci.  相似文献   

17.
Rice molecular genetic map using RFLPs and its applications   总被引:3,自引:0,他引:3  
In the past decade, notable progress has been made in rice molecular genetic mapping using genomic or cDNA clones. A total of over 3000 DNA markers, mainly with RFLPs, have been mapped on the rice genome. In addition, many studies related to tagging of genes of interest, gene isolation by map-based cloning and comparative mapping between cereal genomes have advanced along with the development of a high-density molecular genetic map. Thus rice is considered a pivotal plant among cereal crops and, in addition to Arabidopsis, is a model plant in genome analysis. In this article, the current status of the construction of rice molecular genetic maps and their applications are reviewed.  相似文献   

18.
Bernatzky R  Tanksley SD 《Genetics》1986,112(4):887-898
A linkage map in tomato has been developed based on isozyme and random cDNA clones derived from mRNA. Interspecific backcross and F2 populations of Lycopersicon esculentum and L. pennellii were employed in the linkage analysis. Allelic differences in cDNA markers were based on restriction fragment length polymorphisms detected through Southern analysis. A total of 57 unique cDNA clones have been analyzed. The majority of cDNA markers correspond to single loci and are dispersed throughtout the genome. Of those clones that hybridize to two or more loci, most show genetic independence (ie., they are unlinked). The combination of isozyme, cDNA and previously mapped DNA markers total 112 loci. It is estimated that approximately 92% of the genome can be monitored during segregation with these markers. Molecular maps, such as the one being constructed in tomato, may allow genetic and breeding experiments that previously were not possible.  相似文献   

19.
We report here the results of mapping a set of 92 leaf cDNA clones in maize. The ends of each of these cDNA clones have previously been partially sequenced, and the sequence comparison has revealed the putative function for 28 clones. It is expected that the RFLP map developed using these expressed sequence tags will be of great importance for future maize genome analysis, such as for PCR-based gene mapping or gene function identification.Contribution from the Missouri Agricultural Experiment Station. Journal Series N. 12,019.  相似文献   

20.
A genomic bacterial artificial chromosome (BAC) library of the A genome of wheat has been constructed. Triticum monococcum accession DV92 was selected for this purpose because it is a cultivated diploid wheat and one of the parental lines used in the construction of a saturated genetic map. Leaves from this accession were used to isolate high-molecular-weight DNA from nuclei. This DNA was partially digested with restriction enzyme Hind III, subjected to double size selection, electroeluted and cloned into the pINDIGO451 BAC vector. The library consists of 276,480 clones with an average insert size of 115 kb. Excluding the 1.33% of empty clones and 0.14% of clones with chloroplast DNA, the coverage of this library is 5.6 genome equivalents. With this genome coverage the probability of having any DNA sequence represented in this library is higher than 99.6%. Clones were sorted in 720,384-well plates and blotted onto 15 high-density filters. High-density filters were screened with several single or low-copy clones and five positive BAC clones were selected for further analysis. Since most of the T. monococcum BAC ends included repetitive sequences, a modification was introduced into the classical end-isolation procedure to select low copy sequences for chromosome walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号