首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth cone motility and navigation in response to extracellular signals are regulated by actin dynamics. To better understand actin involvement in these processes we determined how and in what form actin reaches growth cones, and once there, how actin assembly is regulated. A continuous supply of actin is maintained at the axon tip by slow transport, the mobile component consisting of an unassembled form of actin. Actin is co-transported with actin-binding proteins, including ADF and cofilin, structurally related proteins essential for rapid turnover of actin filaments in vivo. ADF and cofilin activity is regulated through phosphorylation by LIM kinases, downstream effectors of the Rho family of GTPases, Cdc42, Rac and Rho. Attractive and repulsive extracellular guidance cues might locally alter actin dynamics by binding specific GTPase-linked receptors, activating LIM kinases, and subsequently modulating the activity of ADF/cofilin. ADF is enriched in growth cones and is required for neurite outgrowth. In addition, signals that influence growth cone behavior alter ADF/cofilin phosphorylation, and overexpression of ADF enhances neurite outgrowth. Growth promoting effects of laminin are mimicked by expression of constitutively active Cdc42 and blocked by expression of the dominant negative Cdc42. Repulsive effects of myelin and sema3D on growth cones are blocked by expression of constitutively active Rac1 and dominant negative Rac1, respectively. Thus a series of complex pathways must exist for regulating effectors of actin dynamics. The bifurcating nature of the ADF/cofilin phosphorylation pathway may provide the integration necessary for this complex regulation.  相似文献   

2.
Axon extension during development of the nervous system is guided by many factors, but the signalling mechanisms responsible for triggering this extension remain mostly unknown. Here we have examined the role of Rho family small guanosine triphosphatases (GTPases) in mediating axon guidance by diffusible factors. Expression of either dominant-negative or constitutively active Cdc42 in cultured Xenopus laevis spinal neurons, at a concentration that does not substantially affect filopodial formation and neurite extension, abolishes the chemoattractive growth cone turning induced by a gradient of brain-derived neurotrophic factor that can activate Cdc42 and Rac in cultured neurons. Chemorepulsion induced by a gradient of lysophosphatidic acid is also abolished by the expression of dominant-negative RhoA. We also show that an asymmetry in Rho kinase or filopodial initiation across the growth cone is sufficient to trigger the turning response and that there is a crosstalk between the Cdc42 and RhoA pathways through their converging actions on the myosin activity essential for growth cone chemorepulsion.  相似文献   

3.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

4.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

5.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

6.
In this study we describe a novel Rho small GTPase dependent pathway that elicits apoptotic responses controlled by actin reorganization in hormone-sensitive LNCaP- and hormone insensitive DU145-prostate cancer cells stimulated with membrane androgen receptor selective agonists. Using an albumin-conjugated steroid, testosterone-BSA, we now show significant induction of actin polymerization and apoptosis that can be reversed by actin disrupting agents in both cell lines. Testosterone-BSA triggered RhoA/B and Cdc42 activation in DU145 cells followed by stimulation of downstream effectors ROCK, LIMK2 and ADF/destrin. Furthermore, dominant-negative RhoA, RhoB or Cdc42 mutants or pharmacological inhibitors of ROCK inhibited both actin organization and apoptosis in DU145 cells. Activation of RhoA/B and ROCK was also implicated in membrane androgen receptor-dependent actin polymerization and apoptosis in LNCaP cells. Our findings suggest that Rho small GTPases are major membrane androgen receptor effectors controlling actin reorganization and apoptosis in prostate cancer cells.  相似文献   

7.
Rho GTPases are versatile regulators of cell shape that act on the actin cytoskeleton. Studies using Rho GTPase mutants have shown that, in some cells, Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively at the leading edge, whereas RhoA mediates contraction at the rear of moving cells. However, recent reports have described a zone of RhoA/ROCK activation at the front of cells undergoing motility. In this study, we use a FRET-based RhoA biosensor to show that RhoA activation localizes to the leading edge of EGF-stimulated cells. Inhibition of Rho or ROCK enhanced protrusion, yet markedly inhibited cell motility; these changes correlated with a marked activation of Rac-1 at the cell edge. Surprisingly, whereas EGF-stimulated protrusion in control MTLn3 cells is Rac-independent and Cdc42-dependent, the opposite pattern is observed in MTLn3 cells after inhibition of ROCK. Thus, Rho and ROCK suppress Rac-1 activation at the leading edge, and inhibition of ROCK causes a switch between Cdc42 and Rac-1 as the dominant Rho GTPase driving protrusion in carcinoma cells. These data describe a novel role for Rho in coordinating signaling by Rac and Cdc42.  相似文献   

8.
Proteolysis of the basement membrane and interstitial matrix occurs early in the angiogenic process and requires matrix metalloproteinase (MMP) activity. Skeletal muscle microvascular endothelial cells exhibit robust actin stress fibers, low levels of membrane type 1 (MT1)-MMP expression, and minimal MMP-2 activation. Depolymerization of the actin cytoskeleton increases MT1-MMP expression and MMP-2 activation. Rho family GTPases are regulators of actin cytoskeleton dynamics, and their activity can be modulated in response to angiogenic stimuli such as vascular endothelial growth factor (VEGF). Therefore, we investigated their roles in MMP-2 and MT1-MMP production. Endothelial cells treated with H1152 [an inhibitor of Rho kinase (ROCK)] induced stress fiber depolymerization and an increase in cortical actin. Both MMP-2 and MT1-MMP mRNA increased, which translated into greater MMP-2 protein production and activation. ROCK inhibition rapidly increased cell surface localization of MT1-MMP and increased PI3K activity, which was required for MMP-2 activation. Constitutively active Cdc42 increased cortical actin polymerization, phosphatidylinositol 3-kinase activity, MT1-MMP cell surface localization, and MMP-2 activation similarly to inhibition of ROCK. Activation of Cdc42 was sufficient to decrease RhoA activity. Capillary sprout formation in a three-dimensional collagen matrix was increased in cultures treated with RhoAN19 or Cdc42QL and, conversely, decreased in cultures treated with dominant negative Cdc42N17. VEGF stimulation also induced activation of Cdc42 while inhibiting RhoA activity. Furthermore, VEGF-dependent activation of MMP-2 was reduced by inhibition of Cdc42. These results suggest that Cdc42 and RhoA have opposing roles in regulating cell surface localization of MT1-MMP and MMP-2 activation.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map–NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.  相似文献   

10.
We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.

  相似文献   


11.
Upregulation and overexpression of discoidin domain receptor 1 (DDR1) have been implied in the regulation of kidney development and progression of cancers. Our previous studies with Mardin-Darby canine kidney (MDCK) cells showed that overexpression of DDR1 inhibited cell spreading, whereas dominant negative DDR1 promoted cell spreading on collagen-coated dish. Cell spreading is an important characteristic for cell differentiation and survival. However, little is known about the molecular mechanisms underlying the role of DDR1 in cell spreading. We have found here a novel signaling pathway of DDR1 consisting of Cdc42 that regulates the assembly and disassembly of cytoskeleton and cell spreading in MDCK cells. Cell spreading involves the organization of cytoskeleton that is mainly regulated by Rho-family GTPases. We assessed the activity of Rho-family GTPases and transfected MDCK cells with constitutively active or dominant negative GTPases, and quantified the extent of cell spreading. These results showed that DDR1 decreased the filamentous actin ratio and Rac1/Cdc42 activities, but had no effects on RhoA activity. Neither constitutively active nor dominant negative Rac1 altered DDR1-inhibited cell spreading. Constitutively active Cdc42 could rescue the DDR1-inhibited cell spreading, whereas dominant negative Cdc42 inhibited cell spreading, indicating that DDR1-inhibited cell spreading is Cdc42 dependent. With the use of alpha(2)beta(1) integrin blocking antibody, we showed that collagen-induced Cdc42 activation was mediated by alpha(2)beta(1) integrin. Moreover, ectopic FAK expression enhanced the Cdc42 activity. Reducing FAK activity by dominant negative FAK (FRNK) markedly abolished the Cdc42 activity. These findings show that DDR1a/b activation inhibits cell spreading through suppressing alpha(2)beta(1) integrin-mediated Cdc42 activation.  相似文献   

12.
The heterotrimeric G-protein G(13) mediates the formation of primitive endoderm from mouse P19 embryonal carcinoma cells in response to retinoic acid, signaling to the level of activation of c-Jun N-terminal kinase. The signal linkage map from MEKK1/MEKK4 to MEK1/MKK4 to JNK is obligate in this G alpha(13)-mediated pathway, whereas that between G alpha(13) and MEKKs is not known. The overall pathway to primitive endoderm formation was shown to be inhibited by treatment with Clostridium botulinum C3 exotoxin, a specific inactivator of RhoA family members. Constitutively active G alpha(13) was found to activate RhoA as well as Cdc42 and Rac1 in these cells. Although constitutively active Cdc42, Rac1, and RhoA all can activate JNK1, only the RhoA mutant was able to promote formation of primitive endoderm, mimicking expression of the constitutively activated G alpha(13). Expression of the constitutively active mutant form of p115RhoGEF (guanine nucleotide exchange factor) was found to activate RhoA and JNK1 activities. Expression of the dominant negative p115RhoGEF was able to inhibit activation of both RhoA and JNK1 in response to either retinoic acid or the expression of a constitutively activated mutant of G alpha(13). Expression of the dominant negative mutants of RhoA as well as those of either Cdc42 or Rac1, but not Ras, attenuated G alpha(13)-stimulated as well as retinoic acid-stimulated activation of all three of these small molecular weight GTPases, suggesting complex interrelationships among the three GTPases in this pathway. The formation of primitive endoderm in response to retinoic acid also could be blocked by expression of dominant negative mutants of RhoA, Cdc42, or Rac1. Thus, the signal propagated from G alpha(13) to JNK requires activation of p115RhoGEF cascades, including p115RhoGEF itself, RhoA, Cdc42, and Rac1. In a concerted effort, RhoA in tandem with Cdc42 and Rac1 activates the MEKK1/4, MEK1/MKK4, and JNK cascade, thereby stimulating formation of primitive endoderm.  相似文献   

13.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.  相似文献   

14.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

15.
16.
An important consequence of cell swelling is the reorganization of the F-actin cytoskeleton in different cell types. We demonstrate in this study by means of rhodamine-phalloidin labeling and fluorescence microscopy that a drastic reorganization of F-actin occurs in swollen Rat-1 fibroblasts: stress fibers disappear and F-actin patches are formed in peripheral extensions at the cell border. Moreover, we demonstrate that activation of both Rac and Cdc42, members of the family of small Rho GTPases, forms the link between the hypotonic stimulation and F-actin reorganization. Indeed, inhibition of the small GTPases RhoA, Rac, and Cdc42 (by Clostridium difficile toxin B) prevents the hypotonicity-induced reorganization of the actin cytoskeleton, whereas inhibition of RhoA alone (by C. limosum C3 exoenzyme) does not preclude this rearrangement. Second, a direct activation and translocation toward the actin patches underneath the plasma membrane is observed for endogenous Rac and Cdc42 (but not for RhoA) during cell swelling. Finally, transfection of Rat-1 fibroblasts with constitutively active RhoA, dominant negative Rac, or dominant negative Cdc42 abolishes the swelling-induced actin reorganization. Interestingly, application of cRGD, a competitor peptide for fibronectin-integrin association, induces identical membrane protrusions and changes in the F-actin cytoskeleton that are also inhibited by C. difficile toxin B and dominant negative Rac or Cdc42. Moreover, cRGD also induces a redistribution of endogenous Rac and Cdc42 to the newly formed submembranous F-actin patches. We therefore conclude that hypotonicity and cRGD remodel the F-actin cytoskeleton in Rat-1 fibroblasts in a Rac/Cdc42-dependent way. Rho; actin; swelling  相似文献   

17.
To get insight into the action of Rho GTPases on the microtubule system we investigated the effects of Cdc42, Rac1, and RhoA on the dynamics of microtubules in Swiss 3T3 fibroblasts. In control cells microtubule ends were dynamic: plus ends frequently switched between growth, shortening and pauses; the growth phase predominated over shortening. Free minus ends of microtubules depolymerized rapidly and never grew. Free microtubules were short-lived, and the microtubule network was organized into a radial array. In serum-starved cells microtubule ends became more stable: although plus ends still transited between growth and shortening, polymerization and depolymerization excursions became shorter and balanced each other. Microtubule minus ends were also stabilized. Consequently lifespan of free microtubules increased and microtubule array changed its radial pattern into a random one. Activation of Cdc42 and Rac1 in serum-starved cells promoted dynamic behavior of microtubule plus and minus ends, while inhibition of these GTPases in serum-grown cells suppressed microtubule dynamics and mimicked all effects of serum starvation. Activation of RhoA in serum-grown cells had effects similar to Cdc42 /Rac1 inactivation: it suppressed the dynamics of plus and minus ends, reduced the length of growth and shrinking episodes, and disrupted the radial organization of microtubules. However, in contrast to Cdc42 and Rac1 inactivation, active RhoA had no effect on the balance between microtubule growth and shortening. We conclude that Cdc42 and Rac1 have similar stimulating effects on microtubule dynamics while RhoA acts in an opposite way.  相似文献   

18.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

19.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

20.
We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号