首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on the anatomy of the eye and the topography of cone photoreceptor cells in the retina is presented for the Nile Tilapia (Oreochromis niloticus). In adults, the shape and proportions of the ocular components of the prominent eye conform to the general form of fish eyes, as determined using cryo-sectioned eyes. The lens is approximately spherical and there is little variation in the distance from the centre of the lens to the border between the choroid and retina at a range of angles about the optical axis. The average ratio of the distance from the centre of the lens to the retina: lens radius (Matthiessen’s ratio) is 2.44:1. In retinal wholemounts, single and double (twin) cone photoreceptors, forming a square mosaic, are present. Peak photoreceptor densities for both morphological cone types are found in the temporal retina. Using peak cone densities and estimates of focal length from cryo-sectioned eyes, visual acuity is calculated to be 5.44 cycles per deg. The lack of apparent specific ocular or retinal specializations and the relatively low visual acuity reflect the lifestyle of the Nile Tilapia and may allow it to adapt to changes in visual environment in its highly variable natural habitat as well as contributing to the ‘ecological flexibility’ of this species.  相似文献   

2.
The eye optics and topographic distribution of ganglion cells were studied using whole mount preparations from European beaver Castor fiber L. The beaver eye optics provides emmetropia in air and hypermetropia in water. The optometrical measurements predict retinal resolution of the beaver eye around 17′ in air and 9′ in water. In air, retinal resolution corresponds to the real visual acuity, whereas in water, visual acuity is below the retinal resolution because of the non-precise focusing.  相似文献   

3.
The eye of the bigeye tuna (Thunnus obesus) contains a retinal tapetum composed of guanine. The total amount of the guanine in one eye of the fish (SL=120 cm) was about 88.6 mg. The mean guanine content of the tapetum was approximately 1.25 mg/cm2 of the retinal surface. The highest content of guanine (2.15 mg/cm2) was observed only in the ventro-temporal part of the retina. To distinguish this area from the rest of the eye, we suggested the term ‘locus tapetalis’ for it. The visual accommodation system clearly indicated that the visual axis of the fish is upper-forward and the resulting retinal area for acute vision was suggested to be in the ventro-temporal retina. We discussed that the area centralis of the bigeye tuna may have two functions: to guarantee high visual acuity and to allow for high photo-sensitivity in dim light vision.  相似文献   

4.
Studies of visual acuity in primates have shown that diurnal haplorhines have higher acuity (30–75 cycles per degree (c/deg)) than most other mammals. However, relatively little is known about visual acuity in non‐haplorhine primates, and published estimates are only available for four strepsirrhine genera (Microcebus, Otolemur, Galago, and Lemur). We present here the first measurements of visual acuity in a cathemeral strepsirrhine species, the blue‐eyed black lemur (Eulemur macaco flavifrons). Acuity in two subjects, a 3‐year‐old male and a 16‐year‐old female, was assessed behaviorally using a two‐alternative forced choice discrimination task. Visual stimuli consisted of high contrast square wave gratings of seven spatial frequencies. Acuity threshold was determined using a 70% correct response criterion. Results indicate a maximum visual acuity of 5.1 c/deg for the female (1718 trials) and 3.8 c/deg for the male (846 trials). These values for E. macaco are slightly lower than those reported for diurnal Lemur catta, and are generally comparable to those reported for nocturnal Microcebus murinus and Otolemur crassicaudatus. To examine ecological sources of variation in primate visual acuity, we also calculated maximum theoretical acuity for Cheirogaleus medius (2.8 c/deg) and Tarsius syrichta (8.9 c/deg) using published data on retinal ganglion cell density and eye morphology. These data suggest that visual acuity in primates may be influenced by activity pattern, diet, and phylogenetic history. In particular, the relatively high acuity of T. syrichta and Galago senegalensis suggests that visual predation may be an important selective factor favoring high visual acuity in primates. Am. J. Primatol. 71:343–352, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The objectives of this study were to determine the effects of different forms of elevated turbidity on the visual acuity of two native Lake Erie fishes and to assess the response of fishes from different trophic levels to elevated turbidity. Additionally, the role of visual morphology (e.g., eye and optic lobe size) on visual acuity was evaluated across visual environments. Reaction distance, a behavioural proxy for measures of visual acuity, was measured for a top predator, walleye Sander vitreus and a forage fish, emerald shiner Notropis atherinoides. In both S. vitreus (n = 27) and N. atherinoides (n = 40) reaction distance across all types of turbidity (sedimentary, algal, sedimentary + algal; 20 NTU) was approximately 50% lower relative to the clear treatment. Reaction distance was further reduced in algal compared with sedimentary turbidity for wild-caught S. vitreus. Eye and brain morphology also influenced reaction distance across turbidity treatments, such that larger relative eye and brain metrics were positively correlated with reaction distance. This study provides evidence for disrupted visual acuity as a potential mechanism underlying fish responses, such as decreased foraging efficiency, to increased turbidity and further indicates that algal turbidity will probably be more detrimental to visual processes than sedimentary turbidity. With the increasing occurrence and severity of harmful algal blooms due to cultural eutrophication globally, this could have significant implications for predator–prey relationships in aquatic systems.  相似文献   

6.
Birds gather visual information through scanning behavior to make decisions relevant for survival (e.g., detecting predators and finding food). The goal of this study was (a) to review some visual properties involved in scanning behavior (retinal specialization for visual resolution and motion detection, visual acuity, and size of the blind area), and (b) hypothesize how the inter-specific variability in these properties may lead to different scanning strategies. The avian visual system has a high degree of heterogeneity in visual performance across the visual field, with some sectors providing higher levels of visual resolution and motion detection (e.g., retinal specializations) than others (e.g., peripheral retina and blind area). Thus, information quality will vary in different parts of the visual field, which contradicts some theoretical assumptions on information gathering. Birds need to move their eyes and heads to align the retinal specializations to different sectors of visual space. The rates of eye and head movements can then be used as proxies for scanning strategies. I propose specific predictions as to how each of the visual properties studied can affect scanning strategies in the context of predator detection in different habitat types and with different levels of predation risk. Establishing the degree of association between sensory specializations and scanning strategies can enhance our understanding of the evolution of anti-predator behavior.  相似文献   

7.
1.  In the compound eye of the maleChrysomyia megacephala the facets in the ventral part of the eye are only ca. 20 m in diameter, but increase abruptly to ca. 80 m above the equator of the eye. Correspondingly there is a large and abrupt increase in the rhabdomere diameter from 2 to as much as 5 urn. The far-field radiation pattern of the eye shows that, despite the large change in ommatidial dimensions, the resolution of the eye remains approximately constant across the equator: angular sensitivity of the photoreceptors and sampling raster are similar ventrally and dorsally. The main result of the large dorsal facets is a more than tenfold increase in light capture. Thus this eye provides a clear example of an insect where large dorsal facets have evolved not for higher acuity, but rather for higher light capture.
2.  Sensitivity is increased even more by a seventh photoreceptor cell joining neural superposition, as reported before for the dorsal eye of male houseflies. All seven photoreceptors have the same spectral sensitivity.
3.  Angular sensitivities in the dorsal eye are more Gaussian-shaped than the flat-topped profile expected for large rhabdomere diameters. This is explained by the anatomical finding that the dorsal rhabdomeres taper strongly. It is suggested that the combination of high photon capture and rounded angular sensitivities is advantageous for monitoring movement and position of small objects.
4.  Finally some of the constraints involved in constructing specialized dorsal eye regions for detection of small objects are considered.
  相似文献   

8.
Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores (Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.  相似文献   

9.
Separately delivered visual and lateral line stimuli elicit similar but not identical orientation and approach by intact, sighted Xenopus. Response frequencies for visual stimuli declined sharply for distant or caudal stimuli while those for lateral line stimuli changed little. Turn angles correlated highly with stimulus angles but were smaller on average, so regression slopes were less than one. Regression slopes were smaller for visual than for lateral line stimuli, but this apparent difference was due to different distributions of stimulus distance interacting with the toad’s rotation center. Errors in final headings, most often under-rotations, did not differ by modality. Frequencies of lunges and arm capture movements were higher for visual stimuli both overall and especially for rostral proximal stimuli. The results demonstrate accurate orientation by sighted Xenopus to visual and lateral line stimuli; they are consistent with expectations based on in-register tectal maps. Orientation to lateral line stimuli is similar to previous results with blinded animals, revealing no heightened acuity in the latter. Modality differences indicate that the lateral line system is better for omnidirectional orientation and approach to distant stimuli whereas the visual system is more attuned to nearby rostral stimuli and more apt to mediate strikes.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

10.
The invasion of the green crab Carcinus maenas in the northeastern U.S. and its competition with the native blue crab Callinectes sapidus and other native crustaceans has been well-documented and researched. Various reasons for the invader’s success against native crabs have been examined (juvenile predation, food source flexibility, etc.), but another possibility is a difference in the learning ability of invasive versus native crab species. In this study, the learning ability of C. maenas and C. sapidus was tested by their increased speed in locating hidden food over successive days. The data suggest that C. maenas possesses a learning ability significantly greater than that of C. sapidus, which may partially contribute to its success.  相似文献   

11.
The eyes of three species of sea turtle hatchlings (loggerheads, green turtles, and leatherbacks) possess visual streaks, areas of densely packed ganglion cells running along the antero‐posterior retinal axis. These probably function to provide heightened visual acuity along the horizon. The vertical extent and absolute concentration of cells within the streak, compared to the rest of the retina, differ among the species. Leatherbacks have an additional specialized region (area temporalis) that might enhance their ability to detect prey below them in the water column. Green turtles and loggerheads, but not leatherbacks, show compensatory eye reflexes that keep the visual streak horizontal. Species differences in retinal structure and eye reflexes probably reflect their unique specializations in visual ecology and behaviour.  相似文献   

12.
Barn owls are nocturnal predators which have evolved specific sensory and morphological adaptations to a life in dim light. Here, some of the most fundamental properties of spatial vision in barn owls are reviewed. The eye with its tubular shape is rigidly integrated in the skull so that eye movements are very much restricted. The eyes are oriented frontally, allowing for a large binocular overlap. Accommodation, but not pupil dilation, is coupled between the two eyes. The retina is rod dominated and lacks a visible fovea. Retinal ganglion cells form a marked region of highest density that extends to a horizontally oriented visual streak. Behavioural visual acuity and contrast sensitivity are poor, although the optical quality of the ocular media is excellent. A low f-number allows high image quality at low light levels. Vernier acuity was found to be a hyperacute percept. Owls have global stereopsis with hyperacute stereo acuity thresholds. Neurons of the visual Wulst are sensitive to binocular disparities. Orientation based saliency was demonstrated in a visual-search experiment, and higher cognitive abilities were shown when the owl’s were able to use illusory contours for object discrimination.  相似文献   

13.
Abstract The bubble crab Dotilla fenestrata forms very dense populations on the sand flats of the eastern coast of Inhaca Island, Mozambique, making it an interesting biological model to examine spatial distribution patterns and test the relative efficiency of common sampling methods. Due to its apparent ecological importance within the sandy intertidal community, understanding the factors ruling the dynamics of Dotilla populations is also a key issue. In this study, different techniques of estimating crab density are described, and the trends of spatial distribution of the different population categories are shown. The studied populations are arranged in discrete patches located at the well‐drained crests of nearly parallel mega sand ripples. For a given sample size, there was an obvious gain in precision by using a stratified random sampling technique, considering discrete patches as strata, compared to the simple random design. Density average and variance differed considerably among patches since juveniles and ovigerous females were found clumped, with higher densities at the lower and upper shore levels, respectively. Burrow counting was found to be an adequate method for large‐scale sampling, although consistently underestimating actual crab density by nearly half. Regression analyses suggested that crabs smaller than 2.9 mm carapace width tend to be undetected in visual burrow counts. A visual survey of sampling plots over several patches of a large Dotilla population showed that crab density varied in an interesting oscillating pattern, apparently following the topography of the sand flat. Patches extending to the lower shore contained higher densities than those mostly covering the higher shore. Within‐patch density variability also pointed to the same trend, but the density increment towards the lowest shore level varied greatly among the patches compared.  相似文献   

14.
In uloborid spiders, eye loss is accompanied by increased visual angles, optical material investment, and potential visual acuity of the retained eyes. Relative to carapace volume, the six-eyed Hyptiotes cavatus and two four-eyed Miagrammopes species have greater retinal hemisphere areas and lens volumes than do the eight-eyed uloborids Waitkera waitkerensis, Uloborus glomosus, and Octonoba sinensis. In Waitkera, in which the eyes have little visual overlap, and in Miagrammopes, in which eye loss simplifies the spiders' patterns of visual overlap, increased retinal cell density enhances potential visual acuity. However, this occurs at the expense of potential retinal cell sensitivity.  相似文献   

15.
The visual acuity of the fiddler-crab can be measured at various illuminations by means of its response to a moving visual pattern. The method, although similar to that used by Hecht and Wolf for the bee and Hecht and Wald for Drosophila, must be modified to give consistent results. An explanation of the response to a visual pattern is given in terms of the structure of the eye. Visual acuity of the crab varies with log I as in man, the bee, and Drosophila. Hecht and Wolf''s explanation of the varying visual acuity with illumination in terms of the distribution of functional ommatidia in the eye is supported to that extent. In the fiddler-crab as in man, monocular and binocular visual acuity is similar with a maximum of 0.0042 for the fiddler-crab. This agrees fairly well with visual acuities of 0.0041, 0.0038, and 0.0032 as found in the field. In man and the bee, the minimum visual angle corresponds to the minimum angle of two adjacent receptors; in Drosophila and the fiddler-crab the minimum visual angle corresponds to approximately twice the minimum angle between two adjacent receptors.  相似文献   

16.
Because of the important role sensory systems play in the behaviour of animals, information on sensory capabilities is of great value to behavioural ecologists in the development of hypotheses to explain behaviour. In compound eyes, interommatidial angles are a key determinant of visual acuity but methods for measuring these angles are often demanding and limited to live animals with a pseudopupil. Here we present a new technique for measuring interommatidial angles that is less demanding in terms of technology than other techniques but still accurate. It allows measurements in eyes without a pseudopupil such as dark eyes or even museum specimens. We call this technique the radius of curvature estimation (RCE) method. We describe RCE and validate the method by comparing results from RCE with those from pseudopupil analysis for the butterfly Asterocampa leilia. As an application of RCE we measure the eyes of the butterfly Battus philenor, a species whose visually guided behaviour is well known but whose eye structure and visual acuity are unknown. We discuss the results of the eye morphology in B. philenor in relation to their behaviour and ecology. We contend that RCE fills a gap in the repertoire of techniques available to study peripheral determinants of spatial resolution in compound eyes, because it can be applied on species with dark eyes. RCE then opens up for sampling a larger number of specimens, which, in combination with being able to use museum specimens, makes it possible to quantitatively test ecologically and evolutionarily driven hypotheses about vision in animals in a new way.  相似文献   

17.
In 1996 Montgomery proposed an ontogenetic shift in the use of visual and non-visual senses in Antarctic notothenioid fishes, with visual dominance in larval fishes giving way to non-visual senses in adults. One prediction of the hypothesis is timing differences in the development of the respective sensory systems, with the visual system expected to develop earlier than the other systems. The volume of certain brain centres can be determined from fixed material and should correlate with sensory development. This study determined the relative volumes of visual and lateral line brain areas, and relative eye size as a function of fish length in Pleuragramma antarcticum.The relative volume of optic tectum was largest in larval fish, exhibiting a negative allometry with growth. The eminentia granularis, and crista cerebellaris (lateral line associated areas) were not recognisable in the smallest larvae; they became differentiated at standard lengths of 10–20 mm and their relative volumes continued to increase over the size range of fish studied (up to 150 mm standard length). Relative eye diameter decreased dramatically over the size range 5–25 mm and then increased such that relative eye diameter doubled over the size range 25–30 mm. A similar, but less extreme, pattern was seen over the size range 30–60 mm. Above 60 mm relative eye diameter increased slightly with size. Our interpretation is that eye growth and somatic growth are on separate trajectories, and the breaks in the relative eye diameter curve result from overwinter periods when somatic growth is static, but the eye continues to grow. These results provide support for the ontogenetic shift hypothesis, and indicate that the timing of the shift probably occurs after the second winter. Received: 22 October 1996 / Accepted: 10 January 1997  相似文献   

18.
Macular disease is one of the main causes of visual impairment. We studied the efficacy of low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular disease. Five patients were enrolled (3 female and 2 male, mean age 53.8 years) and a total of 9 eyes was examined: 2 eyes with vitelliform dystrophy, 1 with a post-traumatic macular scar, 2 with Stargardt disease, 2 with myopic macular degeneration, 2 with cone dystrophy. All the patients underwent the following tests: visual acuity, reading speed, fixation test, MP-1 microperimetry. Low-vision rehabilitation, which lasted 10 weeks, consisted of 10 training sessions of 10 min for each eye, performed once a week using the MP-1 biofeedback examination. Statistical analysis was performed using Student’s t-test. p values less than 0.05 were considered statistically significant. After training all patients displayed an improvement in visual acuity, fixation behaviour, retinal sensitivity and reading speed. Fixation behaviour within the 2° diameter circle improved and was statistically significant for reading speed (p = 0.01). Reading speed improved from a mean value of 64.3 to 92 words/min. Our results show that audio feedback can, by increasing attentional modulation, help the brain to fix the final preferred retinal locus. Audio feedback facilitates stimuli transmission between intraretinal neurons as well as between the retina and brain, which is where the highest level of stimuli processing occurs, thereby probably supporting a “remapping phenomenon”.  相似文献   

19.
A new method for the estimation of foraging on the sea urchin Strongylocentrotus droebachiensis (O.F. Müller, 1776) by the red king crab Paralithodes camtschaticus (Tilesius, 1815) is proposed. This method uses the reconstruction of the size, number, and biomass of eaten sea urchins, based on fragments of their teeth and tests from the crab’s digestive tract. Data obtained by this method suggest that in shallow waters of the Barents Sea (Kola Bay, Dal’nezelenetskaya Bay) adult, most often, female and immature crabs predominantly consume juvenile sea urchins. The weight of sea urchins daily eaten by one adult red king crab was 0.2–8.0% of its body weight for sexually mature crabs and 3.0–28.0% for immature specimens. Damage inflicted to the S. droebachiensis population as a result of the crab feeding activity was estimated to be at least 10% of the sea urchin biomass in Dal’nezelenetskaya Inlet and at least 30% in Kola Bay.  相似文献   

20.
The compound eyes of three taxa of Rhenish Lower Devonian eurypterids are examined and compared with those known from other eurypterids and the extant horseshoe crab Limulus polyphemus. The lateral eyes of the small species Rhenopterus diensti, a phylogenetically basal representative of the stylonurine clade, are characterized by a comparatively low number of lenses and high interommatidial angle Δφ (2.8°). The comparatively limited visual capacities of R. diensti are more similar to L. polyphemus than to its closer relatives of the eurypterine clade and perhaps this reflects a progression of lateral eye structure in the evolution of eurypterids as a whole. The number of eye facets in Adelophthalmus sievertsi is higher than that in the supposed ambush predator Acutiramus cummingsi, but lower than that in other ‘swimming’ eurypterids (Eurypterina). Due to poor preservation, no other eye parameters could be analysed in this species, but further morphological attributes and geographical distribution designate the mid‐sized A. sievertsi as an able swimmer. A low interommatidial angle Δφ of less than 1° confirms that the visual capacities of Jaekelopterus rhenaniae are in line with an interpretation of this giant species as an active high‐level predator. The inferred lifestyles of adult individuals of these three, co‐occurring Rhenish eurypterids indicate niche differentiation avoiding to some degree the competition for food in their marginal marine to delta plain transitional habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号