首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Wetlands are important and restricted habitats for dependent biota and play vital roles in landscape function, hydrology and carbon sequestration. They are also likely to be one of the most sensitive components of the terrestrial biosphere to global climate change. An understanding of relationships between wetland persistence and climate is imperative for predicting, mitigating and adapting to the impacts of future climate change on wetland extent and function. We investigated whether mire wetlands had contracted, expanded or remained stable during 1960–2000. We chose a study area encompassing a regional climatic gradient in southeastern Australia, specifically to avoid confounding effects of water extraction on wetland hydrology and extent. We first characterized trends in climate by examining data from local weather stations, which showed a slight increase in precipitation and marked decline in pan evaporation over the relevant period. Remote sensing of vegetation boundaries showed a marked lateral expansion of mires during 1961–1998, and a corresponding contraction of woodland. The spatial patterns in vegetation change were consistent with the regional climatic gradient and showed a weaker co‐relationship to fire history. Resource exploitation, wildland fires and autogenic mire development failed to explain the observed expansion of mire vegetation in the absence of climate change. We therefore conclude that the extent of mire wetlands is likely to be sensitive to variation in climatic moisture over decadal time scales. Late 20th‐century trends in climatic moisture may be related primarily to reduced irradiance and/or reduced wind speeds. In the 21st century, however, net climatic moisture in this region is projected to decline. As mires are apparently sensitive to hydrological change, we anticipate lateral contraction of mire boundaries in coming decades as projected climatic drying eventuates. This raises concerns about the future hydrological functions, carbon storage capacity and unique biodiversity of these important ecosystems.  相似文献   

2.
Climate velocity is an increasingly used metric to detect habitats, locations and regions which are exposed to high rates of climate change and displacement. In general, velocities are measured based on the assumption that future climatically similar locations can occur anywhere in the study landscape. However, this assumption can provide a biased basis for habitats which are constrained to specific environmental conditions. For such habitats, a set of selected suitable locations may provide ecologically more realistic velocity measures. Here, we focus on one environmentally constrained habitat, aapa mires, which are peat-accumulating EU Habitats Directive priority habitats, whose ecological conditions and biodiversity values may be jeopardised by climate change. We assess the climate exposure of aapa mires in Finland by developing velocity metrics separately for the whole ≥10 ha aapa mire complexes (‘aapa mires’) and their wettest flark-dominated parts (‘flark fens’). Velocity metrics were developed for six bioclimatic variables (growing degree days (GDD5), mean January and July temperatures, annual precipitation, and May and July water balance, based on climate data for 1981–2010 and for 2040–2069 as derived from global climate models for two Representative Concentration Pathways (RCP4.5 and RCP8.5). For the six variables, velocities were calculated based on the distance between climatically similar present-day and nearest future mire, divided by the number of years between the two periods, and by excluding the unsuitable matrix. Both aapa mires and flark fens showed high exposure (>5 km/year) to changes in January temperature, and often also considerably high velocities for GDD5 and July temperatures. The flark fens showed significantly higher climate velocities than the aapa mires and had a smaller amount of corresponding habitat in their surroundings. Thus, many of the studied mires, particularly the flark fens, are likely to face increased risks of exposure due to changes in winter and summer temperatures. Moreover, considerable changes in precipitation-related conditions may occur at the southern margin of the aapa mire zone. Our results show that specifically tailored climate velocity metrics can provide a useful quantitative tool to inform conservation and management decisions to support the ecosystem sustainability of this EU Habitats Directive biotope and targeting restoration towards the most vulnerable aapa mires.  相似文献   

3.
Northern mires (fens and bogs) have significant climate feedbacks and contribute to biodiversity, providing habitats to specialized biota. Many studies have found drying and degradation of bogs in response to climate change, while northern fens have received less attention. Rich fens are particularly important to biodiversity, but subject to global climate change, fen ecosystems may change via direct response of vegetation or indirectly by hydrological changes. With repeated sampling over the past 20 years, we aim to reveal trends in hydrology and vegetation in a pristine boreal fen with gradient from rich to poor fen and bog vegetation. We resampled 203 semi‐permanent plots and compared water‐table depth (WTD), pH, concentrations of mineral elements, and dissolved organic carbon (DOC), plant species occurrences, community structure, and vegetation types between 1998 and 2018. In the study area, the annual mean temperature rose by 1.0°C and precipitation by 46 mm, in 20‐year periods prior to sampling occasions. We found that wet fen vegetation decreased, while bog and poor fen vegetation increased significantly. This reflected a trend of increasing abundance of common, generalist hummock species at the expense of fen specialist species. Changes were the most pronounced in high pH plots, where Sphagnum mosses had significantly increased in plot frequency, cover, and species richness. Changes of water chemistry were mainly insignificant in concentration levels and spatial patterns. Although indications toward drier conditions were found in vegetation, WTD had not consistently increased, instead, our results revealed complex dynamics of WTD as depending on vegetation changes. Overall, we found significant trend in vegetation, conforming to common succession pattern from rich to poor fen and bog vegetation. Our results suggest that responses intrinsic to vegetation, such as increased productivity or altered species interactions, may be more significant than indirect effects via local hydrology to the ecosystem response to climate warming.  相似文献   

4.
5.
Aim Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well‐being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We explore potential methods to identify areas vulnerable to vegetation shifts and potential refugia. Location Global vegetation biomes. Methods We examined nine combinations of three sets of potential indicators of the vulnerability of ecosystems to biome change: (1) observed changes of 20th‐century climate, (2) projected 21st‐century vegetation changes using the MC1 dynamic global vegetation model under three Intergovernmental Panel on Climate Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2). Estimating probability density functions for climate observations and confidence levels for vegetation projections, we classified areas into vulnerability classes based on IPCC treatment of uncertainty. Results One‐tenth to one‐half of global land may be highly (confidence 0.80–0.95) to very highly (confidence ≥ 0.95) vulnerable. Temperate mixed forest, boreal conifer and tundra and alpine biomes show the highest vulnerability, often due to potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes show the lowest vulnerability. Main conclusions Spatial analyses of observed climate and projected vegetation indicate widespread vulnerability of ecosystems to biome change. A mismatch between vulnerability patterns and the geographic priorities of natural resource organizations suggests the need to adapt management plans. Approximately a billion people live in the areas classified as vulnerable.  相似文献   

6.
The relation between climatic conditions and type of peatland ecosystem in the different climate zones in Europe is discussed. Special attention is given to the hydrology of raised bogs in the sub-oceanic region. Possible effects of climatic change on such raised bog systems are discussed in terms of changes in water discharge, ground-water table, rate of peat accumulation, and flora and vegetation. It is concluded that future changes, as suggested by the more widely accepted scenarios for climatic change, will seriously disrupt the ecological functioning of these peatland ecosystems, and it is doubtful whether at least the most southerly examples of sub-oceanic raised bogs will at all survive. Finally, suggestions are given for future research on the impact of climatic change on peatland ecosystems.  相似文献   

7.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

8.
The vulnerability and adaptation of major agricultural crops to various soils in north‐eastern Austria under a changing climate were investigated. The CERES crop model for winter wheat and the CROPGRO model for soybean were validated for the agrometeorological conditions in the selected region. The simulated winter wheat and soybean yields in most cases agreed with the measured data. Several incremental and transient global circulation model (GCM) climate change scenarios were created and used in the study. In these scenarios, annual temperatures in the selected region are expected to rise between 0.9 and 4.8 °C from the 2020s to the 2080s. The results show that warming will decrease the crop‐growing duration of the selected crops. For winter wheat, a gradual increase in air temperature resulted in a yield decrease. Incremental warming, especially in combination with an increase in precipitation, leads to higher soybean yield. A drier climate will reduce soybean yield, especially on soils with low water storage capacity. All transient GCM climate change scenarios for the 21st century, including the adjustment for only air temperature, precipitation and solar radiation, projected reductions of winter wheat yield. However, when the direct effect of increased levels of CO2 concentration was assumed, all GCM climate change scenarios projected an increase in winter wheat yield in the region. The increase in simulated soybean yield for the 21st century was primarily because of the positive impact of warming and especially of the beneficial influence of the direct CO2 effect. Changes in climate variability were found to affect winter wheat and soybean yield in various ways. Results from the adaptation assessments suggest that changes in sowing date, winter wheat and soybean cultivar selection could significantly affect crop production in the 21st century.  相似文献   

9.
Aapa mires are EU priority habitats that harbour unique biodiversity values but face increasing global change threats. Here, we investigate the exposure of red-listed aapa mire species inhabiting fen and flark fen habitats to the impacts of land use and climate change. Climate change-based threats were assessed across the aapa mire zone of Finland based on climate velocities (a metric describing the speed and direction of climate movement) measured for mean January temperature (TJan), growing degree days (GDD5) and mean annual water balance (WAB). Land use threats were assessed based on the cover of drainage ditches and three other adverse land use types around the species occurrences. Our results suggest that rapid changes in TJan may alter winter thermal conditions and thereby also species performance, particularly in the northernmost part of the aapa mire zone, where the most valuable concentrations of red-listed species are situated. The land use and GDD5 threats are highest in the southern regions where the red-listed aapa mire species occurrences are sparser but face severe risks to their persistence. In the central part of the aapa mire zone, a number of valuable aapa mires with red-listed species are exposed to both intermediately high TJan and GDD5 velocities and a spatially varying amount of ditching. Three conservation approaches to support the persistence of red-listed aapa mire species: (i) restoration, (ii) establishment of new protected areas, and (iii) monitoring of the key habitats, should be flexibly and complementarily applied to the preservation of aapa mires subject to accelerating climate change.  相似文献   

10.
Although the fens and bogs of Croatia have already been acknowledged as the nation’s most endangered habitats by Croatia’s National Strategy on Biodiversity Protection, the situation continues to become worse rather than better. Fens and bogs are still rapidly deteriorating and even disappearing. A primary factor appears to be changes in climate since original formation of these peatlands, particularly in recent times. This results in progressive changes in vegetation and finally overgrowth of these habitats by forest vegetation. In many cases human activities, whether directly or indirectly, intentionally or unintentionally, have also led to destruction of such habitats. Looking at all mire types as a whole, acidophilous mires are now nearly extinct in Croatia. Basophilous fens are endangered but not critically so. This is because alkaline waters and associated mineral deposits are relatively widespread through Croatia. Some species have already disappeared from the Croatian flora. The status of other mire plant species is doubtful because there are no records for them in recent decades, while it seems very likely that some of the known surviving species could be lost from Croatia in the near future.  相似文献   

11.
Vulnerability assessments can be helpful in assessing the impact of climate change on natural ecosystems and are expected to support adaptation and/or mitigation strategies in the 21st century. A challenge when conducting such assessments is the integration of the multi-level properties and processes of ecosystems into an assessment framework. Focusing on the primary stresses of climate thermal variability (at both upper and lower extremes), this study proposes a quantitative indicator system—following the IPCC framework of vulnerability assessment—that assesses the impact of historical climate change, during 1901–2013, on the natural terrestrial vegetation types in China. The final output of the vulnerability assessment was expressed as a composite index, composed of ecosystem exposure, sensitivity and resilience to climate thermal change, and including biological, ecological and spatial traits of vegetation types in the assessment. The exposure to temperature variability was generally higher in January than in July, and higher in non-arborous vegetation types than forests. In contrast, sensitivity was higher for forests, wetlands and alpine tundra regions, especially for small areas and areas with scattered patterns. Original forests—especially those distributed in the north—had lower resilience than other vegetation types. The vulnerability of natural vegetation types in China to the temperature variability of the past century was very low to moderate, with a few exceptions, including tropical mangroves and the semi-arid to arid vegetation types in northwestern China, which had high vulnerability. Vulnerability was stronger in winter than in summer. Our results are generally in accord with the scenario-based projections on the geographical pattern of vegetation vulnerability to climate change, and revealed the difference caused by not considering moisture. The risks for these fragmented and narrow-range ecosystems are highlighted, and the importance of natural resilience is stressed for the assessment of vegetation vulnerability to climate change. Given the inadequate coverage of the natural reserve network in China (after the large investment in recent decades) found in the high-vulnerability vegetation types (with a few exceptions), the assessment of natural resilience of ecosystems could be critical for the optimal design of socio-economic strategies in response to the impacts of future climate change.  相似文献   

12.
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure and sensitivity to climatic stimuli, and their history of degradation. Others have highlighted the probable resilience of riparian ecosystems to climate change as a result of their evolution under high levels of climatic and environmental variability. We synthesize current knowledge of the vulnerability of riparian ecosystems to climate change by assessing the potential exposure, sensitivity, and adaptive capacity of their key components and processes, as well as ecosystem functions, goods and services, to projected global climatic changes. We review key pathways for ecological and human adaptation for the maintenance, restoration and enhancement of riparian ecosystem functions, goods and services and present emerging principles for planned adaptation. Our synthesis suggests that, in the absence of adaptation, riparian ecosystems are likely to be highly vulnerable to climate change impacts. However, given the critical role of riparian ecosystem functions in landscapes, as well as the strong links between riparian ecosystems and human well-being, considerable means, motives and opportunities for strategically planned adaptation to climate change also exist. The need for planned adaptation of and for riparian ecosystems is likely to be strengthened as the importance of many riparian ecosystem functions, goods and services will grow under a changing climate. Consequently, riparian ecosystems are likely to become adaptation ‘hotspots’ as the century unfolds.  相似文献   

13.
The Intergovernmental Panel on Climate Change (IPCC) predicts an increase in global temperatures of between 1.4°C and 5.8°C during the 21st century, as a result of elevated CO2 levels. Using bioclimatic envelope models, we evaluate the potential impact of climate change on the distributions and species richness of 120 native terrestrial non-volant European mammals under two of IPCC’s future climatic scenarios. Assuming unlimited and no migration, respectively, our model predicts that 1% or 5–9% of European mammals risk extinction, while 32–46% or 70–78% may be severely threatened (lose > 30% of their current distribution) under the two scenarios. Under the no migration assumption endemic species were predicted to be strongly negatively affected by future climatic changes, while widely distributed species would be more mildly affected. Finally, potential mammalian species richness is predicted to become dramatically reduced in the Mediterranean region but increase towards the northeast and for higher elevations. Bioclimatic envelope models do not account for non-climatic factors such as land-use, biotic interactions, human interference, dispersal or history, and our results should therefore be seen as first approximations of the potential magnitude of future climatic changes.  相似文献   

14.
The study of potential vegetation can reveal the impact of climate on changes in vegetation patterns. It is the starting point for studying vegetation-environmental classification and relationships, and it is the key point for studying global change and terrestrial ecosystems. By using the Comprehensive Sequential Classification System (CSCS) and the meteorological data under the four climate change scenarios from the IPCC5 publication, the present paper carries out a GIS simulation study of the spatial distribution of potential vegetation in China at the end of the 21st century. The results indicate that under the four climate scenarios at the end of the 21st century: (1) The potential vegetation in China shows significant horizontal and vertical distribution, which corresponds well to those of natural topographic features. (2) There are 40 classes of potential vegetation in China. Tropical-extrarid tropical desert (VIIA), which has no corresponding condition of growth in China, is commonly lacking, and differences exist among the potential vegetation classes and among the ratios of the classes under different scenarios. (3) From the perspective of categories, temperate forest is the most widely distributed, and savanna is the least widely distributed. Together with the strengthening of the radiation intensity according to RCP2.6 → RCP4.5 → RCP6.0 → RCP8.5, the area covered by cold-dry potential vegetation decreases as the area covered by warm-humid potential vegetation increases. As a result, the areas of tundra and alpine steppe, frigid desert, steppe, and temperate humid grassland tend to decrease, and those of semi-desert, temperate forest, sub-tropical forest, tropical forest, warm desert, and savanna tend to increase. Moreover, the potential vegetation in China at the end of the 21st century would change at different levels and in different directions when compared with that at the end of the 20th century. (4) In the same period, potential vegetation in different regions shows differences in their sensitivity to climate change, and by the end of the 21st century, 30.73% of land in China would be classified as a sensitive region, which highly corresponds to the current ecologically vulnerable zone, and whose potential vegetation easily evolves along with changes of climate scenarios.  相似文献   

15.
Boreal forests and arctic tundra cover 33% of global land area and store an estimated 50% of total soil carbon. Because wildfire is a key driver of terrestrial carbon cycling, increasing fire activity in these ecosystems would likely have global implications. To anticipate potential spatiotemporal variability in fire‐regime shifts, we modeled the spatially explicit 30‐yr probability of fire occurrence as a function of climate and landscape features (i.e. vegetation and topography) across Alaska. Boosted regression tree (BRT) models captured the spatial distribution of fire across boreal forest and tundra ecoregions (AUC from 0.63–0.78 and Pearson correlations between predicted and observed data from 0.54–0.71), highlighting summer temperature and annual moisture availability as the most influential controls of historical fire regimes. Modeled fire–climate relationships revealed distinct thresholds to fire occurrence, with a nonlinear increase in the probability of fire above an average July temperature of 13.4°C and below an annual moisture availability (i.e. P‐PET) of approximately 150 mm. To anticipate potential fire‐regime responses to 21st‐century climate change, we informed our BRTs with Coupled Model Intercomparison Project Phase 5 climate projections under the RCP 6.0 scenario. Based on these projected climatic changes alone (i.e. not accounting for potential changes in vegetation), our results suggest an increasing probability of wildfire in Alaskan boreal forest and tundra ecosystems, but of varying magnitude across space and throughout the 21st century. Regions with historically low flammability, including tundra and the forest–tundra boundary, are particularly vulnerable to climatically induced changes in fire activity, with up to a fourfold increase in the 30‐yr probability of fire occurrence by 2100. Our results underscore the climatic potential for novel fire regimes to develop in these ecosystems, relative to the past 6000–35 000 yr, and spatial variability in the vulnerability of wildfire regimes and associated ecological processes to 21st‐century climate change.  相似文献   

16.
There has been considerable recent interest concerning the impact of climate change on a wide range of taxa. However, little is known about how the biogeographic affinities of taxa may affect their responses to these impacts. Our main aim was to study how predicted climate change will affect the distribution of 28 European bat species grouped by their biogeographic patterns as determined by a spatial Principal Component Analysis. Using presence‐only modelling techniques and climatic data (minimum temperature, average temperature, precipitation, humidity and daily temperature range) for four different climate change scenarios (IPCC scenarios ranging from the most extreme A1FI, A2, B2 to the least severe, B1), we predict the potential geographic distribution of bat species in Europe grouped according to their biogeographic patterns for the years 2020–2030, 2050–2060 and 2090–2100. Biogeographic patterns exert a great influence on a species' response to climate change. Bat species more associated with colder climates, hence northern latitudes, could be more severely affected with some extinctions predicted by the end of the century. The Mediterranean and Temperate groups seem to be more tolerant of temperature increases, however, their projections varied considerably under different climate change scenarios. Scenario A1FI was clearly the most detrimental for European bat diversity, with several extinctions and declines in occupied area predicted for several species. The B scenarios were less damaging and even predicted that some species could increase their geographical ranges. However, all models only took into account climatic envelopes whereas available habitat and species interactions will also probably play an important role in delimiting future distribution patterns. The models may therefore generate ‘best case’ predictions about future changes in the distribution of European bats.  相似文献   

17.
18.
Continental‐scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill‐suited for assessment of species‐specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high‐resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat by 2070–2100. While our high‐resolution analyses consistently indicate marked levels of threat to cold‐adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.  相似文献   

19.
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse‐scar bogs, low shrub/scrub, and forests growing on elevated ice‐rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half‐century, and much of these carbon‐rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape‐level losses of forest area due to thermokarst from 1949 to 2009. Over the 60‐year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape‐level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice‐rich permafrost ecosystems to climate changes depend on forest type.  相似文献   

20.
气候变化对东北沼泽湿地潜在分布的影响   总被引:1,自引:0,他引:1  
贺伟  布仁仓  刘宏娟  熊在平  胡远满 《生态学报》2013,33(19):6314-6319
东北地区是我国沼泽湿地分布最广泛的地区。为研究沼泽湿地对气候变化的响应,选取了对沼泽湿地分布可能存在影响的26个环境因子,利用最大熵(Maximum Entropy, MaxEnt)模型模拟了沼泽湿地基准气候条件下的潜在分布,并预测了气候变化情景下2011-2040 年、2041-2070 年和2071-2100 年3个研究阶段东北沼泽湿地潜在分布。研究结果表明:最大熵模型预测精度较高(平均AUC(Aera Under Curve)为(0.826±0.005))。基准气候条件下东北沼泽潜在分布区主要为大小兴安岭和三江平原地区。随着时间的推进,东北地区沼泽湿地原有潜在分布面积明显减少,而新增潜在分布面积较少,总面积呈现急剧减少趋势。至2071-2100年,原有沼泽湿地潜在分布面积将减少99.80%,新增潜在分布面积仅2.48%,总潜在分布面积减少97.32%。空间分布上,东北沼泽湿地潜在分布呈现由东向西迁移,南北向中心收缩的趋势。研究结果可为东北地区沼泽湿地保护政策的制定提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号