首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A key challenge in marker-assisted selection (MAS) for molecular plant breeding is to develop markers linked to genes of interest which are applicable to multiple breeding populations. In this study representative F2 plants from a cross Mandalup (resistant to anthracnose disease) × Quilinock (susceptible) of Lupinus angustifolius were used in DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphism (MFLP). Nine candidate MFLP markers linked to anthracnose resistance were identified, then ‘validated’ on 17 commercial cultivars. The number of “false positives” (showing resistant-allele band but lack of the R gene) for each of the nine candidate MFLP markers on the 17 cultivars ranged from 1 to 9. The candidate marker with least number of false positive was selected, sequenced, and was converted into a co-dominant, sequence-specific, simple PCR based marker suitable for routine implementation. Testing on 180 F2 plants confirmed that the converted marker was linked to the R gene at 5.1 centiMorgan. The banding pattern of the converted marker was consistent with the disease phenotype on 23 out of the 24 cultivars. This marker, designated “AnManM1”, is now being used for MAS in the Australian lupin breeding program. We conclude that generation of multiple candidate markers, followed by a validation step to select the best marker before conversion to an implementable form is an efficient strategy to ensure wide applicability for MAS.  相似文献   

2.
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F8 recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F8 population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of “false positives” (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.  相似文献   

3.
Phomopsis stem blight (PSB) caused by Diaporthe toxica is a major disease in narrow-leafed lupin ( Lupinus angustifolius L.). The F(2) progeny and the parental plants from a cross between a breeding line 75A:258 (containing a single dominant resistance gene Phr1 against the disease) and a commercial cultivar Unicrop (susceptible to the disease) were used for development of molecular markers linked to the disease resistance gene. Two pairs of co-dominant DNA polymorphisms were detected using the microsatellite-anchored fragment length polymorphism (MFLP) technique. Both pairs of polymorphisms were isolated from the MFLP gels, re-amplified by PCR, sequenced, and converted into co-dominant, sequence-specific and PCR-based markers. Linkage analysis by MAPMAKER suggested that one marker (Ph258M2) was 5.7 centiMorgans (cM) from Phr1, and the other marker (Ph258M1) was 2.1 cM from Ph258M2 but further away from Phr1. These markers are suitable for marker-assisted selection (MAS) in lupin breeding.  相似文献   

4.
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

5.
Selection for anthracnose disease resistance is one of the major objectives in lupin breeding programs. The aim of this study was to develop a molecular marker linked to a gene conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.), which can be widely used for MAS in lupin breeding. A F(8)derived RIL population from a cross between cultivar Tanjil (resistant to anthracnose) and Unicrop (susceptible) was used for marker development. DNA fingerprinting was conducted on 12 representative plants by combining the AFLP method with primers designed based on conserved sequences of plant disease resistance genes. A co-dominant candidate marker was detected from a DNA fingerprint. The candidate marker was cloned, sequenced, and converted into a sequence-specific, simple PCR based marker. Linkage analysis based on a segregating population consisting of 184 RILs suggested that the marker, designated as AntjM2, is located 2.3 cM away from the R gene conferring anthracnose resistance in L. angustifolius. The marker has now being implemented for MAS in the Australian national lupin breeding program.  相似文献   

6.
7.
Seed pods of wild-type narrow-leafed lupins (Lupinus angustifolius L.) shatter upon maturity, dispersing their seeds. Recessive alleles of the genes Tardus and Lentus that confer reduced pod shattering have been incorporated into domesticated cultivars to facilitate harvesting. Tardus was mapped in an F8 recombinant inbred population of a cross between domesticated and wild lupins. A microsatellite–anchored fragment length polymorphism marker (TaM1), which mapped 2.1 cM from Tardus, was converted to a locus-specific PCR assay. Marker TaM2, a restriction fragment length polymorphism marker was converted to a PCR assay and mapped to 3.9 cM on the other side of Tardus. Marker TaM3, a cleaved amplified polymorphic sequence marker, was positioned along-side marker TaM1 at 3.9 cM from Tardus. One or more markers was polymorphic in 70% of possible pairwise crosses between Australian domesticated lines and wild accessions tested, indicating wide applicability of the markers in crosses between wild and domesticated germplasm.  相似文献   

8.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

9.
A mapping population of F(8)derived recombinant inbred lines (RILs) was established from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin (Lupinus angustifolius L.). The parents together with the 89 RILs were subjected to DNA fingerprinting using microsatellite-anchored fragment length polymorphism (MFLP) to rapidly generate DNA markers to construct a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 7 or more markers. The total map length was 1543 cM, with an average distance of 3.4 cM between adjacent markers. This is the first published map for a lupin species. The map can be exploited for marker assisted selection for genetic improvement in lupin breeding programs.  相似文献   

10.
Ji  Yishan  Liu  Rong  Hu  Jinguo  Huang  Yuning  Wang  Dong  Li  Guan  Rahman  Md. Mosiur  Zhang  Hongyan  Wang  Chenyu  Li  Mengwei  Yang  Tao  Zong  Xuxiao 《Molecular biology reports》2020,47(7):5215-5224
Molecular Biology Reports - Narrow-leafed lupin (Lupinus angustifolius L.) is used as grain legumes, fodder for livestock and green manure in the world and has a great potential to be developed as...  相似文献   

11.
12.
In contrast to most widespread broad-acre crops, the narrow-leafed lupin (Lupinus angustifolius L.) was domesticated very recently, in breeding programmes isolated in both space and time. Whereas domestication was initiated in Central Europe in the early twentieth century, the crop was subsequently industrialized in Australia, which now dominates world production. To investigate the ramifications of these bottlenecks, the genetic diversity of wild (n = 1,248) and domesticated populations (n = 95) was characterized using diversity arrays technology, and adaptation studied using G × E trials (n = 31) comprising all Australian cultivars released from 1967 to 2004 (n = 23). Principal coordinates analysis demonstrates extremely limited genetic diversity in European and Australian breeding material compared to wild stocks. AMMI analysis indicates that G × E interaction is a minor, albeit significant effect, dominated by strong responses to local, Western Australian (WA) optima. Over time Australian cultivars have become increasingly responsive to warm, intermediate rainfall environments in the northern WA grainbelt, but much less so to cool vegetative phase eastern environments, which have considerably more yield potential. G × E interaction is well explained by phenology, and its interaction with seasonal climate, as a result of varying vernalization responses. Yield differences are minimized when vegetative phase temperatures fully satisfy the vernalization requirement (typical of eastern Australia), and maximized when they do not (typical of WA). In breeding for WA optima, the vernalization response has been eliminated and there has been strong selection for terminal drought avoidance through early phenology, which limits yield potential in longer season eastern environments. Conversely, vernalization-responsive cultivars are more yield-responsive in the east, where low temperatures moderately extend the vegetative phase. The confounding of phenology and vernalization response limits adaptation in narrow-leafed lupin, isolates breeding programmes, and should be eliminated by widening the flowering time range in a vernalization-unresponsive background. Concomitantly, breeding strategies that will widen the genetic base of the breeding pool in an ongoing manner should be initiated.  相似文献   

13.
14.
The narrow-leafed lupin possesses valuable traits for environment-friendly agriculture and for the production of unconventional agricultural products. Despite various genetic and environmental studies, the breeding of improved cultivars has been slow due to the limited knowledge of its genomic structure. Further advances in genomics require, among other things, the availability of a genomic DNA library with large inserts. We report here on the construction of the first DNA library cloned in a BAC (bacterial artificial chromosome) vector from diploid Lupinus angustifolius L. cv. Sonet. The high molecular weight DNA used for its preparation was isolated from interphase nuclei that were purified by flow cytometry. The library comprises 55,296 clones and is ordered in 144×384-well microtitre plates. With an average insert size of 100 kb, the library represents six haploid genome equivalents. Thanks to the purification of the nuclei by flow cytometry, contamination with chloroplast DNA and mitochondrial DNA was negligible. The availability of a BAC library opens avenues for the development of a physical contig map and positional gene cloning, as well as for the analysis of the plant’s genome structure and evolution.  相似文献   

15.
The present study was undertaken to investigate the effect of cholesterol-enriched casein (CAS) and blue lupin seed (BL) diets on the cholesterol metabolism of intact (INT) and ileorectal anastomosed (IRA) pigs. For 3 weeks, four groups of six pigs were allocated to the treatments (CAS-INT, CAS-IRA, BL-INT, and BL-IRA). Diet-induced hypercholesterolemia was inhibited by the BL through a substantial decrease in plasma LDL-cholesterol. The BL also reduced liver esterified and total cholesterol, increased hepatic LDL receptor synthesis and HMG-CoA reductase activity, and stimulated intestinal bile acid reabsorption. The neutral sterol output was higher in BL- than in CAS-fed pigs. The bile acid output was lower in IRA than in INT pigs. Surgery also prevented steroid microbial transformation, but it did not influence plasma cholesterol levels. These results suggest that the hypocholesterolemic effect of the BL, compared with the CAS, is attributable to impaired intestinal cholesterol absorption, probably involving increased bile acid reabsorption and higher contents of dietary phytosterols, both factors that reduce the micellar solubilization of cholesterol. Furthermore, according to our data, the contribution of the large intestine to cholesterol metabolism is very weak.  相似文献   

16.
The completion of genome-sequencing initiatives for model plants and EST databases for major crop species provides a large resource for gaining fundamental knowledge of complex gene interactions and the functional significance of proteins. There are increasingly numerous opportunities to transfer this information to other plant species with uncharacterized genomes and make advances in genome analysis, gene expression, and predicted protein function. In this study, we have used DNA sequences from soybean and Arabidopsis to determine the feasibility of applying comparative genomics to narrow-leafed lupin. We have used transcribed sequences from soybean and showed that a high proportion cross hybridize to lupin DNA, identifying similar genes and providing landmarks for estimating the degree of chromosomal synteny between species. To further investigate comparative relationships in this study, a detailed analysis of three lupin genes and comparison of orthologs from soybean and Arabidopsis shows that, in some cases, gene structure and expression are highly conserved and their proteins may have similar function. In other cases, genes show variation in expression profiles indicating alternative functions across species. The advantages and limitation of using soybean and Arabidopsis sequences for comparative genomics in lupins are discussed.  相似文献   

17.
The influence of frequent magnetic field stimulation (MFS) on plants is the subject of intense research. The effects of MFS on plants vary depending on its intensity, time of exposure or application form. The effects of low-frequency magnetic field in two doses, 0.2 mT, 16 Hz (MFS-1) and 0.2 mT, 50 Hz (MFS-2) on the mitotic activity and selected physiological and biochemical parameters in narrow-leafed lupin (Lupinus angustifolius L.) were evaluated. Non-exposed plants were used as control (C). It was noted that after the exposure of plants to MFS-1, the biometric parameters, mitotic activity, BSA and GPOX activity remained at the control level. However, a significant decrease in the assimilation pigment content was observed. On the other hand, the exposure of plants to MFS-2 was manifested by a decrease in the biometric parameters, mitotic activity and the assimilation pigment content, but an increase in GPOX activity in roots was noted.  相似文献   

18.
Transgenic plants of Lupinus angustifolius L. (cvs. Unicrop and Merrit) were routinely generated using Agrobacterium-mediated gene transfer to shoot apices. The bar gene for resistance to phosphinothricin (PPT, the active ingredient of the herbicide Basta) was used as the selectable marker. After co-cultivation, the shoot apex explants were transferred onto a PPT-free regeneration medium and their tops were thoroughly wetted with PPT solution (2 mg/ml). The multiple axillary shoots developing from the shoot apices were excised onto a medium containing 20 mg/l PPT. The surviving shoots were transferred every second week onto fresh medium containing 20 mg/l PPT. At each transfer, the number of surviving shoots decreased, until it stabilized. Indeed, some of these chimeric shoots surviving the PPT selection, eventually produced new green healthier axillary shoots which could be transferred to soil. This whole process took from 5 to 9 months after co-cultivation. Average transformation frequencies of 2.8% for cv. Unicrop and of 0.4% for the commercial cultivar Merrit were achieved. Molecular analysis of T0, T1, and T2 generations demonstrated stable integration of the foreign gene into the plant genome and expression of the integrated gene. Transformed plants of the T1 and T2 generations were resistant in glasshouse trials where the herbicide Basta (0.1 mg/ml) was sprayed onto whole plants. These results demonstrate that Agrobacterium-mediated gene transfer to preorganised meristematic tissue combined with axillary regeneration can form the basis of a routine transformation system for legume crop species which are difficult to regenerate from other explants.  相似文献   

19.
BAC (bacterial artificial chromosome) clones from the genomic BAC library of the narrow-leafed lupin (Lupinus angustifolius) were used for cytogenetic mapping of mitotic metaphase chromosomes of that species by the BAC-FISH technique. Location of the clones, together with cytogenetic markers localised earlier by FISH (fluorescencein situ hybridisation) and PRINS (primedin situ DNA labelling), was combined with computer-aided chromosome measurements, to construct the first idiogram of the narrow-leafed lupin. The chromosomes are meta- or submetacentric; the mean absolute chromosome lengths range from 1.9 μm to 3.8 μm, and mean relative lengths from 1.6% to 3.3%. Data concerning linkage of resistance to 2 fungal pathogens as well as assignment of the second linkage group to the appropriate chromosome are given for the first time.  相似文献   

20.

Key message

This is the first clear evidence of duplication and/or triplication of large chromosomal regions in a genome of a Genistoid legume, the most basal clade of Papilionoid legumes.

Abstract

Lupinus angustifolius L. (narrow-leafed lupin) is the most widely cultivated species of Genistoid legume, grown for its high-protein grain. As a member of this most basal clade of Papilionoid legumes, L. angustifolius serves as a useful model for exploring legume genome evolution. Here, we report an improved reference genetic map of L. angustifolius comprising 1207 loci, including 299 newly developed Diversity Arrays Technology markers and 54 new gene-based PCR markers. A comparison between the L. angustifolius and Medicago truncatula genomes was performed using 394 sequence-tagged site markers acting as bridging points between the two genomes. The improved L. angustifolius genetic map, the updated M. truncatula genome assembly and the increased number of bridging points between the genomes together substantially enhanced the resolution of synteny and chromosomal colinearity between these genomes compared to previous reports. While a high degree of syntenic fragmentation was observed that was consistent with the large evolutionary distance between the L. angustifolius and M. truncatula genomes, there were striking examples of conserved colinearity of loci between these genomes. Compelling evidence was found of large-scale duplication and/or triplication in the L. angustifolius genome, consistent with one or more ancestral polyploidy events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号