首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We present a mathematical model for predicting the expected fitness of phenotypically plastic organisms experiencing a variable environment. We assume that individuals experience two discrete environments probabilistically in time (as a Markov process) and that there are two different phenotypic states, each yielding the highest fitness in one of the two environments. We compare the expected fitness of a phenotypically fixed individual to that of an individual whose phenotype is induced to produce the better phenotype in each environment with a time lag between experiencing a new environment and realization of the new phenotype. Such time lags are common in organisms where phenotypically plastic, inducible traits have been documented. We find that although plasticity is generally adaptive when time lags are short (relative to the time scale of environmental variability), plasticity can be disadvantageous for longer lag times. Asymmetries in environmental change probabilities and/or the relative fitnesses of each phenotype strongly influence whether plasticity is favoured. In contrast to other models, our model does not require costs for plasticity to be disadvantageous; costs affect the results quantitatively, not qualitatively.  相似文献   

2.
In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet‐hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual‐based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet‐hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.  相似文献   

3.
Development in many organisms appears to show evidence of sensitive windows—periods or stages in ontogeny in which individual experience has a particularly strong influence on the phenotype (compared to other periods or stages). Despite great interest in sensitive windows from both fundamental and applied perspectives, the functional (adaptive) reasons why they have evolved are unclear. Here we outline a conceptual framework for understanding when natural selection should favour changes in plasticity across development. Our approach builds on previous theory on the evolution of phenotypic plasticity, which relates individual and population differences in plasticity to two factors: the degree of uncertainty about the environmental conditions and the extent to which experiences during development (‘cues’) provide information about those conditions. We argue that systematic variation in these two factors often occurs within the lifetime of a single individual, which will select for developmental changes in plasticity. Of central importance is how informational properties of the environment interact with the life history of the organism. Phenotypes may be more or less sensitive to environmental cues at different points in development because of systematic changes in (i) the frequency of cues, (ii) the informativeness of cues, (iii) the fitness benefits of information and/or (iv) the constraints on plasticity. In relatively stable environments, a sensible null expectation is that plasticity will gradually decline with age as the developing individual gathers information. We review recent models on the evolution of developmental changes in plasticity and explain how they fit into our conceptual framework. Our aim is to encourage an adaptive perspective on sensitive windows in development.  相似文献   

4.
Almost all life histories are phenotypically plastic: that is, life-history traits such as timing of breeding, family size or the investment in individual offspring vary with some aspect of the environment, such as temperature or food availability. One approach to understanding this phenotypic plasticity from an evolutionary point of view is to extend the optimality approach to the range of environments experienced by the organism. This approach attempts to understand the value of particular traits in terms of the selection pressures that act on them either directly or owing to trade-offs due to resource allocation and other factors such as predation risk. Because these selection pressures will between environments, the predicted optimal phenotype will too. The relationship expressing the optimal phenotype for different environments is the optimal reaction norm and describes the optimal phenotypic plasticity. However, this view of phenotypic plasticity ignores the fact that the reaction norm must be underlain by some sort of control system: cues about the environment must be collected by sense organs, integrated into a decision about the appropriate life history, and a message sent to the relevant organs to implement that decision. In multicellular animals, this control mechanism is the neuroendocrine system. The central question that this paper addresses is whether the control system affects the reaction norm that evolves. This might happen in two different ways: first, the control system will create constraints on the evolution of reaction norms if it cannot be configured to produce the optimal reaction norm and second, the control system will create additional selection pressures on reaction norms if the neuroendocrine system is costly. If either of these happens, a full understanding of the way in which selection shapes reaction norms must include details of the neuroendocrine control system. This paper presents the conceptual framework needed to explain what is meant by a constraint or cost being created by the neuroendocrine system and discusses the extent to which this occurs and some possible examples. The purpose of doing this is to encourage endocrinologists to take a fresh look at neuroendocrine mechanisms and help identify the properties of the system and situations in which these generate constraints and costs that impinge on the evolution of phenotypic plasticity.  相似文献   

5.
The role of phenotypic plasticity in driving genetic evolution   总被引:15,自引:0,他引:15  
Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic plasticity in driving genetic evolution. Moderate levels of phenotypic plasticity are optimal in permitting population survival in a new environment and in bringing populations into the realm of attraction of an adaptive peak. High levels of plasticity may increase the probability of population persistence but reduce the likelihood of genetic change, because the plastic response itself places the population close to a peak. Moderate levels of plasticity arise whenever multiple traits, some of which are plastic and others not, form a composite trait involved in the adaptive response. For example, altered behaviours may drive selection on morphology and physiology. Because there is likely to be a considerable element of chance in which behaviours become established, behavioural change followed by morphological and physiological evolution may be a potent force in driving evolution in novel directions. We assess the role of phenotypic plasticity in stimulating evolution by considering two examples from birds: (i) the evolution of red and yellow plumage coloration due to carotenoid consumption; and (ii) the evolution of foraging behaviours on islands. Phenotypic plasticity is widespread in nature and may speed up, slow down, or have little effect on evolutionary change. Moderate levels of plasticity may often facilitate genetic evolution but careful analyses of individual cases are needed to ascertain whether plasticity has been essential or merely incidental to population differentiation.  相似文献   

6.
Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.  相似文献   

7.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

8.
克隆植物的表型可塑性与等级选择   总被引:15,自引:0,他引:15       下载免费PDF全文
表型可塑性是指生物个体生长发育过程中遭受不同环境条件作用时产生不同表型的能力。进化的发生有赖于自然选择对种群遗传可变性产生的效力以及各基因型的表型可塑性。有足够的证据说明表型可塑性的可遗传性,它实际上是进化改变的一个成分。一般通过优化模型、数量遗传模型和配子模型来研究表型可塑性的进化。植物的构型是相对固定的,并未完全抑制表型可塑性。克隆植物因其双构件性而具有更广泛的、具有重要生态适应意义的表型可塑性。构件性使克隆植物具有以分株为基本单位的等级结构,从而使克隆植物的表型选择也具有等级性。构件等级一般包含基株、克隆片段或分株系统以及分株3个典型水平。目前认为克隆植物的自然选择有两种模式,分别以等级选择模型和基因型选择模型表征。等级选择模型认为:不同的等级水平同时也是表型选择水平,环境对各水平具有作用,各水平之间也有相互作用,多重表型选择水平的净效应最终通过繁殖水平——分株传递到随后的世代中。基因型选择模型指出:克隆生长引起分株的遗传变异,并通过基株内分株间以及基株间的非随机交配引起种子库等位基因频率的改变,产生微进化。这两种选择模式均突出强调了分株水平在自然选择过程中的变异性以及在进化中的重要性,强调了克隆生长和种子繁殖对基株适合度的贡献。基因型选择模型包含等级选择模型的观点,是对等级选择模型的重要补充。克隆植物的表型可塑性表现在3个典型等级层次上,由于各层次对自然选择压力具有不同的反应,其表型变异程度一般表现出“分株层次>分株片段层次>基株层次”的等级性反应模式。很多证据表明,在构件有机体中构件具有最大的表型可塑性,植物的表型可塑性实际上是构件而非整个遗传个体的反应。这说明克隆植物的等级反应模式可能具有普适性。如果该反应模式同时还是构件等级中不同“个体”适应性可塑性反应的模式,那么可以预测:1)在克隆植物中,分株层次受到的自然选择强度也最大,并首先发生适应性可塑性变化,最终引起克隆植物微进化;2)由于较弱的有性繁殖能力,克隆植物在进化过程中的保守性可能大于非克隆植物。克隆植物等级反应模式的普适性亟待验证。  相似文献   

9.
Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selection regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post‐glacial fish, replicated divergence in phenotypes along the benthic‐limnetic habitat axis is commonly observed. Here, we use two benthic‐limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feeding efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the phenotypically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.  相似文献   

10.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

11.
Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that phenotypic plasticity tends to stabilize population dynamics more strongly than rapid evolution. It is therefore important to know the mechanism by which phenotypic variation is generated for predicting the dynamics of rapidly adapting populations. We next examine an advantage of a phenotypically plastic prey genotype over the polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic genotype to replace specialist genotypes, a forced environmental fluctuation is critical in a broad parameter range. When these results are combined, the plastic genotype enjoys an advantage with population oscillations, but plasticity tends to lose its advantage by stabilizing the oscillations. This dilemma leads to an interesting intermittent limit cycle with the changing frequency of phenotypic plasticity.  相似文献   

12.
We use an individual-based numerical simulation to study the effects of phenotypic plasticity on ecological speciation. We find that adaptive plasticity evolves readily in the presence of dispersal between populations from different ecological environments. This plasticity promotes the colonization of new environments but reduces genetic divergence between them. We also find that the evolution of plasticity can either enhance or degrade the potential for divergent selection to form reproductive barriers. Of particular importance here is the timing of plasticity in relation to the timing of dispersal. If plasticity is expressed after dispersal, reproductive barriers are generally weaker because plasticity allows migrants to be better suited for their new environment. If plasticity is expressed before dispersal, reproductive barriers are either unaffected or enhanced. Among the potential reproductive barriers we considered, natural selection against migrants was the most important, primarily because it was the earliest-acting barrier. Accordingly, plasticity had a much greater effect on natural selection against migrants than on sexual selection against migrants or on natural and sexual selection against hybrids. In general, phenotypic plasticity can strongly alter the process of ecological speciation and should be considered when studying the evolution of reproductive barriers.  相似文献   

13.
Many phenotypes respond physiologically or developmentally to continuously distributed environmental variables such as temperature and nutritional quality. Information about phenotypic plasticity can be used to improve the efficiency of artificial selection. Here we show that the quantitative genetic theory for 'infinite-dimensional' traits such as reaction norms provides a natural framework to accomplish this goal. It is expected to improve selection responses by making more efficient use of information about environmental effects than do conventional methods. The approach is illustrated by deriving an index for mass selection of a phenotypically plastic trait. We suggest that the same approach could be extended directly to more general and efficient breeding schemes, such as those based on general best linear unbiased prediction. Methods for estimating genetic covariance functions are reviewed.  相似文献   

14.
Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects.  相似文献   

15.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

16.
Phenotypic plasticity, the ability to adjust phenotype to the exposed environment, is often advantageous for organisms living in heterogeneous environments. Although the degree of plasticity appears limited in nature, many studies have reported low costs of plasticity in various species. Existing studies argue for ecological, genetic, or physiological costs or selection eliminating plasticity with high costs, but have not considered costs arising from sexual selection. Here, we show that sexual selection caused by mate choice can impede the evolution of phenotypic plasticity in a trait used for mate choice. Plasticity can remain low to moderate even in the absence of physiological or genetic costs, when individuals phenotypically adapted to contrasting environments through plasticity can mate with each other and choose mates based on phenotypic similarity. Because the non-choosy sex (i.e., males) with lower degrees of plasticity are more favored in matings by the choosy sex (i.e., females) adapted to different environments, directional selection toward higher degrees of plasticity is constrained by sexual selection. This occurs at intermediate strengths of female choosiness in the range of the parameter value we examined. Our results demonstrate that mate choice is a potential source of an indirect cost to phenotypic plasticity in a sexually selected plastic trait.  相似文献   

17.
Being sessile organisms, plants show a high degree of developmental plasticity to cope with a constantly changing environment. While plasticity in plants is largely controlled genetically, recent studies have demonstrated the importance of epigenetic mechanisms, especially DNA methylation, for gene regulation and phenotypic plasticity in response to internal and external stimuli. Induced epigenetic changes can be a source of phenotypic variations in natural plant populations that can be inherited by progeny for multiple generations. Whether epigenetic phenotypic changes are advantageous in a given environment, and whether they are subject to natural selection is of great interest, and their roles in adaptation and evolution are an area of active research in plant ecology. This review is focused on the role of heritable epigenetic variation induced by environmental changes, and its potential influence on adaptation and evolution in plants.  相似文献   

18.
Plant species adapt to changing environmental conditions through phenotypic plasticity and natural selection. Agrawal et al. (2018) found that dandelions responded to the presence of insect pests by producing higher levels of defensive compounds. This defensive response resulted both from phenotypic plasticity, with individual plants' defenses triggered by insect attack, and from evolution by natural selection acting on genetic variation in the plant population.  相似文献   

19.
Phenotypic plasticity itself evolves, as does any other quantitative trait. A very different question is whether phenotypic plasticity causes evolution or is a major evolutionary mechanism. Existing models of the evolution of phenotypic plasticity cover many of the proposals in the literature about the role of phenotypic plasticity in evolution. I will extend existing models to cover adaptation to a novel environment, the appearance of ecotypes and possible covariation between phenotypic plasticity and mean trait value of ecotypes. Genetic assimilation does not sufficiently explain details of observed patterns. Phenotypic plasticity as a major mechanism for evolution--such as, invading new niches, speciation or macroevolution--has, at present, neither empirical nor model support.  相似文献   

20.
Nick Lauter  John Doebley 《Genetics》2002,160(1):333-342
How new discrete states of morphological traits evolve is poorly understood. One possibility is that single-gene changes underlie the evolution of new discrete character states and that evolution is dependent on the occurrence of new single-gene mutations. Another possibility is that multiple-gene changes are required to elevate an individual or population above a threshold required to produce the new character state. A prediction of the latter model is that genetic variation for the traits should exist in natural populations in the absence of phenotypic variation. To test this idea, we studied traits that are phenotypically invariant within teosinte and for which teosinte is discretely different from its near relative, maize. By employing a QTL mapping strategy to analyze the progeny of a testcross between an F(1) of two teosintes and a maize inbred line, we identified cryptic genetic variation in teosinte for traits that are invariant in teosinte. We argue that such cryptic genetic variation can contribute to the evolution of novelty when reconfigured to exceed the threshold necessary for phenotypic expression or by acting to modify or stabilize the effects of major mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号