首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase–deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63–linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63–linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63–linked ubiquitination.  相似文献   

2.
The TNFα-induced NF-κB signaling pathway plays critical roles in multiple biological processes. Extensive studies have explored the mechanisms regulating this signaling cascade, and identified an E2 complex, Uev1A-Ubc13, that mediates K63-linked poly-Ub chain formation and thus recruits NEMO to activate the signaling transduction. In this study, we demonstrate that the Uev1A-Ubc13 complex simultaneously serves as a repressor of the NF-κB pathway. It was found that cells overexpressing UEV1A silence the signal cascade earlier than control cells. Importantly, UEV1A overexpression enhances TACE maturation to shed the TNFα receptor. The Uev1A-Ubc13 complex interacts with RHBDF2, a key factor promoting TACE maturation, and inhibition of the Uev1A-Ubc13 activity interferes with RHBDF2-promoted TACE maturation. Furthermore, upon TNFα stimulation, the Uev1A-Ubc13 complex cooperates with CHIP to promote K63-linked ubiquitination of RHBDF2, enhancing its activity toward TACE maturation and subsequently blocking TNFα-induced NF-κB signaling.  相似文献   

3.
《Autophagy》2013,9(2):251-253
Although protein inclusions associated with neurodegenerative diseases are typically enriched with ubiquitin, it is currently unclear whether the topology of ubiquitin linkage plays a role in their biogenesis. In an attempt to clarify this, our recent work identified K63-linked polyubiquitin as a key regulator of inclusion dynamics. We found in the setting of ectopic overexpression of different ubiquitin species in cultured cells that K63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions linked to several major neurodegenerative diseases. Further supporting this, we report here a similar phenomenon in cells co-expressing Ubc13 and Uev1a but not those expressing UbcH7 or UbcH8. Notably, Ubc13 in association with Uev1a is known to promote K63-linked ubiquitination. In exploring how K63-linked ubiquitination could promote the clearance of inclusions by autophagy, we also found in our current study that K63-linked polyubiquitin interacts with p62, a ubiquitin-binding protein previously demonstrated by others to facilitate autophagy-mediated clearance of inclusions. Further, K63 ubiquitin-positive inclusions were found to be enriched with p62. Given the observed intimate relationship between p62 and K63 polyubiquitin, our results suggest that p62 and K63-linked polyubiquitin may function as key partners involved in directing clearance of protein inclusions by autophagy.

Addendum to: Tan JMM, Wong ESP, Kirkpatrick DS, Pletnikova O, Ko HS, Tay S-P, Ho M.W.L., Troncoso J, Gygi SP, Lee MK, Dawson VL, Dawson TM, Lim K-L. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human Mol Genet; In press.  相似文献   

4.
《Autophagy》2013,9(7):986-987
Toll-like receptor 4 (TLR4) signaling triggers autophagy, which has been linked to both adaptive and innate immunity. Engagement of TLR4 recruits to the receptor complex Beclin 1, a key component of a class III phosphatidylinositol 3-kinase complex (PI3KC3) that initiates autophagosome formation. Recently, we found that tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-mediates Lys63 (K63)-linked ubiquitination of Beclin 1 is crucial for TLR4-triggered autophagy in macrophages. We identified two TRAF6-binding motifs in Beclin 1 that facilitate the binding of TRAF6 and the ubiquitination of Beclin 1. A lysine located in the Bcl-2 homology 3 (BH3) domain of Beclin 1 serves as a major site for K63-linked ubiquitination. Opposing TRAF6, the deubiquitinating enzyme A20 reduces the extent of K63-linked ubiquitination of Beclin 1 and limits the induction of autophagy in response to TLR4 signaling. Furthermore, treatment of macrophages with either interferon- or interleukin-1 triggers the K63-linked ubiquitination of Beclin 1 and the formation of autophagosomes. These results indicate that the status of K63-linked ubiquitination of Beclin 1 plays a key role in regulating autophagy during inflammatory responses.  相似文献   

5.
The tripartite motif-containing protein 21 (TRIM21) plays important roles in autophagy and innate immunity. Here, we found that HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), as an interferon-stimulated gene 15 (ISG15) E3 ligase, catalyzes the ISGylation of TRIM21 at the Lys260 and Lys279 residues. Moreover, IFN-β also induces TRIM21 ISGylation at multiple lysine residues, thereby enhancing its E3 ligase activity for K63-linkage-specific ubiquitination and resulting in increased levels of TRIM21 and p62 K63-linked ubiquitination. The K63-linked ubiquitination of p62 at Lys7 prevents its self-oligomerization and targeting to the autophagosome. Taken together, our study suggests that the ISGylation of TRIM21 plays a vital role in regulating self-oligomerization and localization of p62 in the autophagy induced by IFN-β.Subject terms: Proteins, Autophagy, Innate immunity, Post-translational modifications  相似文献   

6.
Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.  相似文献   

7.
8.
9.
Ubc13, a ubiquitin-conjugating enzyme (Ubc), requires the presence of a Ubc variant (Uev) for polyubiquitination. Uevs, although resembling Ubc in sequence and structure, lack the active site cysteine residue and are catalytically inactive. The yeast Uev (Mms2) incites noncanonical Lys63-linked polyubiquitination by Ubc13, whereas the increased diversity of Uevs in higher eukaryotes suggests an unexpected complication in ubiquitination. In this study, we demonstrate that divergent activities of mammalian Ubc13 rely on its pairing with either of two Uevs, Uev1A or Mms2. Structurally, we demonstrate that Mms2 and Uev1A differentially modulate the length of Ubc13-mediated Lys63-linked polyubiquitin chains. Functionally, we describe that Ubc13-Mms2 is required for DNA damage repair but not nuclear factor kappaB (NF-kappaB) activation, whereas Ubc13-Uev1A is involved in NF-kappaB activation but not DNA repair. Our finding suggests a novel regulatory mechanism in which different Uevs direct Ubcs to diverse cellular processes through physical interaction and alternative polyubiquitination.  相似文献   

10.
Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity.  相似文献   

11.
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.  相似文献   

12.
A relatively unexplored nexus in Drosophila Immune deficiency (IMD) pathway is TGF-beta Activating Kinase 1 (TAK1), which triggers both immunity and apoptosis. In a cell culture screen, we identified that Lysine at position 142 was a K63-linked Ubiquitin acceptor site for TAK1, required for signalling. Moreover, Lysine at position 156 functioned as a K48-linked Ubiquitin acceptor site, also necessary for TAK1 activity. The deubiquitinase Trabid interacted with TAK1, reducing immune signalling output and K63-linked ubiquitination. The three tandem Npl4 Zinc Fingers and the catalytic Cysteine at position 518 were required for Trabid activity. Flies deficient for Trabid had a reduced life span due to chronic activation of IMD both systemically as well as in their gut where homeostasis was disrupted. The TAK1-associated Binding Protein 2 (TAB2) was linked with the TAK1-Trabid interaction through its Zinc finger domain that pacified the TAK1 signal. These results indicate an elaborate and multi-tiered mechanism for regulating TAK1 activity and modulating its immune signal.  相似文献   

13.
W Cui  N Xiao  H Xiao  H Zhou  M Yu  J Gu  X Li 《Molecular and cellular biology》2012,32(19):3990-4000
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-β-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and β-TrCP. Knockdown of β-TrCP1 and β-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, β-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of β-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.  相似文献   

14.
The tomato—Pseudomonas syringae pv. tomato (Pst)—pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450) in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.  相似文献   

15.
Sequestration of misfolded proteins into pericentriolar inclusions called aggresomes is a means that cells use to minimize misfolded protein-induced cytotoxicity. However, the molecular mechanism by which misfolded proteins are recruited to aggresomes remains unclear. Mutations in the E3 ligase parkin cause autosomal recessive Parkinson's disease that is devoid of Lewy bodies, which are similar to aggresomes. Here, we report that parkin cooperates with heterodimeric E2 enzyme UbcH13/Uev1a to mediate K63-linked polyubiquitination of misfolded DJ-1. K63-linked polyubiquitination of misfolded DJ-1 serves as a signal for interaction with histone deacetylase 6, an adaptor protein that binds the dynein-dynactin complex. Through this interaction, misfolded DJ-1 is linked to the dynein motor and transported to aggresomes. Furthermore, fibroblasts lacking parkin display deficits in targeting misfolded DJ-1 to aggresomes. Our findings reveal a signaling role for K63-linked polyubiquitination in dynein-mediated transport, identify parkin as a key regulator in the recruitment of misfolded DJ-1 to aggresomes, and have important implications regarding the biogenesis of Lewy bodies.  相似文献   

16.
Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.  相似文献   

17.
Disruption of the gatekeeper p53 tumor suppressor is involved in various virus-associated tumorigeneses, with aberrant ubiquitination as the major cause of p53 abnormalities in virus-associated tumors. Of note, wild-type p53 is accumulated in Epstein-Barr virus (EBV)-associated tumors, especially in nasopharyngeal carcinoma (NPC). We have previously identified that p53 is accumulated and phosphorylated by EBV oncoprotein latent membrane protein 1 (LMP1) in NPC. Here, we further found that LMP1 promoted p53 accumulation via two distinct ubiquitin modifications. LMP1 promoted p53 stability and accumulation by suppressing K48-linked ubiquitination of p53 mediated by E3 ligase MDM2, which is associated with its phosphorylation at Ser20, while increasing the levels of total cellular ubiquitinated p53. LMP1 also induced K63-linked ubiquitination of p53 by interacting with tumor necrosis factor receptor-associated factor 2 (TRAF2), thus contributing to p53 accumulation. Furthermore, LMP1 rescued tumor cell apoptosis and cell cycle arrest mediated by K63-linked ubiquitination of p53. Collectively, these results demonstrate aberrant ubiquitin modifications of p53 and its biological functions by viral protein LMP1, which has broad implications to the pathogenesis of multiple EBV-associated tumors.  相似文献   

18.
UBC13 is the only known E2 ubiquitin (Ub)-conjugating enzyme that produces Lys-63-linked Ub chain with its cofactor E2 variant UEV1a or MMS2. Lys-63-linked ubiquitination is crucial for recruitment of DNA repair and damage response molecules to sites of DNA double-strand breaks (DSBs). A deubiquitinating enzyme OTUB1 suppresses Lys-63-linked ubiquitination of chromatin surrounding DSBs by binding UBC13 to inhibit its E2 activity independently of the isopeptidase activity. OTUB1 strongly suppresses UBC13-dependent Lys-63-linked tri-Ub production, whereas it allows di-Ub production in vitro. The mechanism of this non-canonical OTUB1-mediated inhibition of ubiquitination remains to be elucidated. Furthermore, the atomic level information of the interaction between human OTUB1 and UBC13 has not been reported. Here, we determined the crystal structure of human OTUB1 in complex with human UBC13 and MMS2 at 3.15 Å resolution. The presented atomic-level interactions were confirmed by surface-plasmon resonance spectroscopy with structure-based mutagenesis. The designed OTUB1 mutants cannot inhibit Lys-63-linked Ub chain formation in vitro and histone ubiquitination and 53BP1 assembly around DSB sites in vivo. Finally, we propose a model for how capping of di-Ub by the OTUB1-UBC13-MMS2/UEV1a complex efficiently inhibits Lys-63-linked tri-Ub formation.  相似文献   

19.
Ubiquitin Specific Protease 25 (USP25), a member of the deubiquitinase family, is involved in several disease-related signal pathways including myogenesis, immunity and protein degradation. It specially catalyzes the hydrolysis of the K48-linked and K63-linked polyubiquitin chains. USP25 contains one ubiquitin-associated domain and two ubiquitin-interacting motifs (UIMs) in its N-terminal region, which interact with ubiquitin and play a role in substrate recognition. Besides, it has been shown that the catalysis activity of USP25 is either impaired by sumoylation or enhanced by ubiquitination within its UIM. To elucidate the structural basis of the cross-regulation of USP25 function by non-covalent binding and covalent modifications of ubiquitin and SUMO2/3, a systematic structural biology study of USP25 is required. Here, we report the 1H, 13C and 15N backbone and side-chain resonance assignments of the N-terminal ubiquitin binding domains (UBDs) of USP25 with BMRB accession number of 19111, which is the first step of the systematic structural biology study of the enzyme.  相似文献   

20.
Arachidonic acid, a dietary cis-polyunsaturated fatty acid, stimulates adhesion and migration of human cancer cells on the extracellular matrix by activation of intracellular signaling pathways. Polyubiquitin chains bearing linkages through different lysine residues convey distinct structural and functional information that is important for signal transduction. We investigated whether ubiquitination was required for arachidonic acid-induced cellular adhesion and migration of MDA-MB-435 cells on collagen type IV. An E1 (ubiquitin-activating enzyme) inhibitor, PYR-431, completely abrogated arachidonic acid-stimulated adhesion. Additionally, expression of a lysine null mutant ubiquitin prevented activation of cellular adhesion. Cells expressing ubiquitin in which lysine 63 (K63) was mutated to arginine (K63R) were unable to adhere to collagen upon exposure to arachidonic acid. When K63 was the only lysine present, the cells retained the ability to adhere, indicating that K63-linked ubiquitin is both necessary and sufficient. Moreover, K63-linked ubiquitin was required for the induction of cell migration by arachidonic acid. The ubiquitin mutants and PYR-431 did not prevent arachidonic acid-induced phosphorylation of TGF-β activated kinase-1 (TAK1) and p38 MAPK, suggesting K63-linked ubiquitination occurs downstream of MAPK. These novel findings are the first to demonstrate a role for K63-linked ubiquitination in promoting cell adhesion and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号