首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Epigenetics》2013,8(10):1431-1438
Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.  相似文献   

2.
A single tumor may contain cells with different somatic mutations. By characterizing this genetic heterogeneity within tumors, advances have been made in the prognosis, treatment and understanding of tumorigenesis. In contrast, the extent of epigenetic intra-tumor heterogeneity and how it influences tumor biology is under-explored. We have characterized epigenetic heterogeneity within individual tumors using next-generation sequencing. We used deep single molecule bisulfite sequencing and sample-specific DNA barcodes to determine the spectrum of MLH1 promoter methylation across an average of 1000 molecules in each of 33 individual samples in parallel, including endometrial cancer, matched blood and normal endometrium. This first glimpse, deep into each tumor, revealed unexpectedly heterogeneous patterns of methylation at the MLH1 promoter within a subset of endometrial tumors. This high-resolution analysis allowed us to measure the clonality of methylation in individual tumors and gain insight into the accumulation of aberrant promoter methylation on both alleles during tumorigenesis.  相似文献   

3.

Background

Germline defects of mismatch repair (MMR) genes underlie Lynch Syndrome (LS). We aimed to gain comprehensive genetic and epigenetic profiles of LS families in Singapore, which will facilitate efficient molecular diagnosis of LS in Singapore and the region.

Methods

Fifty nine unrelated families were studied. Mutations in exons, splice-site junctions and promoters of five MMR genes were scanned by high resolution melting assay followed by DNA sequencing, large fragment deletions/duplications and promoter methylation in MLH1, MSH2, MSH6 and PMS2 were evaluated by multiplex ligation-dependent probe amplification. Tumor microsatellite instability (MSI) was assessed with five mononucleotide markers and immunohistochemical staining (IHC) was also performed.

Results

Pathogenic defects, all confined to MLH1 and MSH2, were identified in 17 out of 59 (28.8%) families. The mutational spectrum was highly heterogeneous and 28 novel variants were identified. One recurrent mutation in MLH1 (c.793C>T) was also observed. 92.9% sensitivity for indication of germline mutations conferred by IHC surpassed 64.3% sensitivity by MSI. Furthermore, 15.6% patients with MSS tumors harbored pathogenic mutations.

Conclusions

Among major ethnic groups in Singapore, all pathogenic germline defects were confined to MLH1 and MSH2. Caution should be applied when the Amsterdam criteria and consensus microsatellite marker panel recommended in the revised Bethesda guidelines are applied to the local context. We recommend a screening strategy for the local LS by starting with tumor IHC and the hotspot mutation testing at MLH1 c.793C>T followed by comprehensive mutation scanning in MLH1 and MSH2 prior to proceeding to other MMR genes.  相似文献   

4.
5.
Lynch syndrome (LS) accounts for 3–5% of all colorectal cancers (CRC) and is inherited in an autosomal dominant fashion. This syndrome is characterized by early CRC onset, high incidence of tumors in the ascending colon, excess of synchronous/metachronous tumors and extra-colonic tumors. Nowadays, LS is regarded of patients who carry deleterious germline mutations in one of the five mismatch repair genes (MMR), mostly in MLH1 and MSH2, but also in MSH6, PMS1 and PMS2. To comprehensively characterize 116 Brazilian patients suspected for LS, we assessed the frequency of germline mutations in the three minor genes MSH6, PMS1 and PMS2 in 82 patients negative for point mutations in MLH1 and MSH2. We also assessed large genomic rearrangements by MLPA for detecting copy number variations (CNVs) in MLH1, MSH2 and MSH6 generating a broad characterization of MMR genes. The complete analysis of the five MMR genes revealed 45 carriers of pathogenic mutations, including 25 in MSH2, 15 in MLH1, four in MSH6 and one in PMS2. Eleven novel pathogenic mutations (6 in MSH2, 4 in MSH6 and one in PMS2), and 11 variants of unknown significance (VUS) were found. Mutations in the MLH1 and MSH2 genes represented 89% of all mutations (40/45), whereas the three MMR genes (MSH6, PMS1 and PMS2) accounted for 11% (5/45). We also investigated the MLH1 p.Leu676Pro VUS located in the PMS2 interaction domain and our results revealed that this variant displayed no defective function in terms of cellular location and heterodimer interaction. Additionally, we assessed the tumor phenotype of a subset of patients and also the frequency of CRC and extra-colonic tumors in 2,365 individuals of the 116 families, generating the first comprehensive portrait of the genetic and clinical aspects of patients suspected of LS in a Brazilian cohort.  相似文献   

6.
BackgroundThe low prevalence of the BRAF V600E mutation in colorectal cancers (CRCs) in Chinese populations has stimulated concern about the efficacy of BRAF mutation analysis for Lynch syndrome (LS) screening.MethodsIn total, 169 of 4104 consecutive CRC patients with absent MLH1 staining were analyzed to compare the utility of the BRAF V600E mutation testing with MLH1 promoter methylation analysis in the Chinese population. Germline genetic testing was performed in patients with wild-type BRAF/methylated MLH1.ResultsCompared with BRAF genotyping, the use of MLH1 methylation testing alone to evaluate patients with MLH1 deficiency reduced referral rates for germline testing by 1.8-fold (82.8% vs. 47.1%). However, 6 patients harboring MLH1 promoter methylation were verified to have LS through germline genetic testing. It is notable that all 6 patients had a family history of CRC in at least 1 first-degree relative (FDR) or second-degree relative (SDR). The combination of MLH1 promoter methylation analysis and a family history of CRC could preclude significantly more patients from germline genetic testing than from BRAF mutation testing alone (45.5% vs. 17.2%, p<0.001) and decrease the number of misdiagnosed LS patients with MLH1 promoter methylation.ConclusionThe combination of a family history of CRC with MLH1 promoter methylation analysis showed better performance than BRAF mutation testing in the selection of patients in the Chinese population for germline genetic testing.  相似文献   

7.
Acute myeloid leukemia (AML) is an aggressive hematological cancer. Despite therapeutic regimens that lead to complete remission, the vast majority of patients undergo relapse. The molecular mechanisms underlying AML development and relapse remain incompletely defined. To explore whether loss of DNA mismatch repair (MMR) function is involved in AML, we screened two key MMR genes, MSH2 and MLH1, for mutations and promoter hypermethylation in leukemia specimens from 53 AML patients and blood from 17 non-cancer controls. We show here that whereas no amino acid alteration or promoter hypermethylation was detected in all control samples, 18 AML patients exhibited either mutations in MMR genes or hypermethylation in the MLH1 promoter. In vitro functional MMR analysis revealed that almost all the mutations analyzed resulted in loss of MMR function. MMR defects were significantly more frequent in patients with refractory or relapsed AML compared with newly diagnosed patients. These observations suggest for the first time that the loss of MMR function is associated with refractory and relapsed AML and may contribute to disease Datho8enesis.  相似文献   

8.
BackgroundLynch syndrome (LS) is the first cause of inherited colorectal cancer (CRC), being responsible for 2–4% of all diagnoses. Identification of affected individuals is important as they have an increased lifetime risk of multiple CRC and other neoplasms, however, LS is consistently underdiagnosed at the population level. We aimed to evaluate the yield of LS screening in CRC in a single-referral centre and to identify the barriers to its effective implementation.MethodsLS screening programme included individuals with CRC < 70 years, multiple CRC, or endometrial cancer at any age. Mismatch repair (MMR) protein immunohistochemistry (IHC) analysis was performed in routine practice on the surgical specimen and, if MLH1 IHC was altered, MLH1 gene promoter methylation was analysed. Results were collected in the CRC multidisciplinary board database. LS suspected individuals (altered MMR IHC without MLH1 promoter methylation) were referred to the Cancer Genetic Counselling Unit (CGCU). If accepted, a genetic study was performed. Two checkpoints were included: review of the pathology data and verification of patient referral by a genetic counsellor.ResultsBetween 2016 and 2019, 381 individuals were included. MMR IHC analysis was performed in 374/381 (98.2 %) CRC cases and MLH1 promoter methylation in 18/21 (85.7 %). Seventeen of the 20 LS suspected individuals were invited for referral at the CGCU. Two cases were not invited and the remaining patient died of cancer before completion of tumour screening. Fifteen individuals attended and a genetic analysis was performed in 15/20 (75 %) LS suspected individuals. Ten individuals were diagnosed with LS, in concordance with the IHC profile (2.7 % of the total cohort). This led to cascade testing in 58/75 (77.3 %) of the available adult relatives at risk, identifying 26 individuals with LS.ConclusionsEstablishing a standardized institutional LS screening programme with checkpoints in the workflow is key to increasing the yield of LS identification.  相似文献   

9.
Defects in DNA mismatch repair (MMR) are the molecular basis of certain cancers, including hematological malignancies. The defects are often caused by mutations in coding regions of MMR genes or promoter methylation of the genes. However, in many cases, despite that a hypermutable phenotype is detected in a patient, no mutations/hypermethylations of MMR genes can be detected. We report here a novel mechanism that a mutation in the MLH1 3'-untranslated region (3'-UTR) leads to MMR deficiency. A relapsed leukemia patient displayed microsatellite instability, but no genetic and epigenetic alterations in key MMR genes were identifiable. Instead, a 3-nucleotide (TTC) deletion in the MLH1 3'-UTR was found in the patient's blood sample. The mutant MLH1 3'-UTR was found to significantly reduce the expressions of both a firefly luciferase reporter gene and an ectopic MLH1 gene in model cell lines. Consistent with these observations, a significant reduction in the steady-state level of MLH1 mRNA was observed in white blood cells of the patient. These findings suggest that the mutant MLH1 3'-UTR can cause a severely reduced/defective MMR activity conferring leukemia relapse, likely by down-regulating MLH1 expression at the mRNA level. Although the exact mechanism by which the mutant 3'-UTR down-regulates the MLH1 mRNA is not known, our findings provide a novel marker for cancers with MMR defects.  相似文献   

10.
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.  相似文献   

11.
Microsatellite instability (MSI) is regarded as reflecting defective DNA mismatch repair (MMR). MMR defects lead to an increase in point mutations, as well as repeat instability, on the genome. However, despite the highly unstable microsatellites, base substitutions in representative oncogenes or tumor suppressors are extremely infrequent in MSI-positive tumors. Recently, the heterogeneity in MSI-positive colorectal tumors is pointed out, and the 'hereditary' and 'sporadic settings' are proposed. Particularly in the former, base substitution mutations in KRAS are regarded as relatively frequent. We sequenced the KRAS gene in a panel of 76 human colorectal carcinomas in which the MSI status has been determined. KRAS mutations were detected in 22 tumors (28.9%). Intriguingly, all of the KRAS-mutant MSI-H (high) tumors harbored sequence alterations in an essential MMR gene, MLH1, which implies that KRAS mutation more frequently and almost exclusively occurs in MMR gene-mutant MSI-H tumors. Furthermore, in contrast with the prevailing viewpoint, some of these tumors are derived from sporadic colorectal cancer patients. The tight connection between MMR gene mutation and KRAS mutation may suggest previously unrecognized complexities in the relationship between MSI and the mutator phenotype derived from defective MMR.  相似文献   

12.
Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation. We previously demonstrated that SNPs (rs1800734, rs749072, and rs13098279) in the MLH1 gene region are associated with MLH1 promoter island methylation, loss of MLH1 protein expression, and microsatellite instability (MSI) in colorectal cancer (CRC) patients. Recent studies have identified less CpG-dense “shore” regions flanking many CpG islands. These shores often exhibit distinct methylation profiles between different tissues and matched normal versus tumor cells of patients. To date, most epigenetic studies have focused on somatic methylation events occurring within solid tumors; less is known of the contributions of peripheral blood cell (PBC) methylation to processes such as aging and tumorigenesis. To address whether MLH1 methylation in PBCs is correlated with tumorigenesis we utilized the Illumina 450 K microarrays to measure methylation in PBC DNA of 846 healthy controls and 252 CRC patients from Ontario, Canada. Analysis of a region of chromosome 3p21 spanning the MLH1 locus in healthy controls revealed that a CpG island shore 1 kb upstream of the MLH1 gene exhibits different methylation profiles when stratified by SNP genotypes (rs1800734, rs749072, and rs13098279). Individuals with wild-type genotypes incur significantly higher PBC shore methylation than heterozygous or homozygous variant carriers (p<1.1×10−6; ANOVA). This trend is also seen in CRC cases (p<0.096; ANOVA). Shore methylation also decreases significantly with increasing age in cases and controls. This is the first study of its kind to integrate PBC methylation at a CpG island shore with SNP genotype status in CRC cases and controls. These results indicate that CpG island shore methylation in PBCs may be influenced by genotype as well as the normal aging process.  相似文献   

13.

Purpose

To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis.

Methods

A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated.

Results

The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; P<0.001), tumor differentiation (pooled OR = 2.131, 95% CI: 1.464–3.102; P<0.001), MSI (OR: 27.096, 95% CI: 13.717–53.526; P<0.001). Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; P<0.001) and 9.419 (95% CI: 2.613–33.953; P = 0.001), respectively).

Conclusion

The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation.  相似文献   

14.
15.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

16.
Wang X  Fan J  Liu D  Fu S  Ingvarsson S  Chen H 《PloS one》2011,6(10):e25913
The highly repetitive Alu retroelements are regarded as methylation centres in the genome. Methylation in the gene promoters could be spreading from them. Promoter methylation of MLH1 is frequently detected in cancers, but the underlying mechanism is unclear. The aim of this study is to understand whether the methylation in the Alu elements is associated with promoter methylation in the MLH1 gene. Bisulfite genomic sequencing was used to analyse the CpG sites of the 5' end (promoter, exon 1 and Alu-containing intron 1) of the MLH1 gene in colorectal cancer cells and tissues, and gastric cancer tissues. Hypomethylation in the Alu elements and hypermethylation in the promoters and the regions between the promoters and the Alu elements were detected in two cancer cell lines and seven cancer tissues. However, demethylation or hypomethylation of the MLH1 promoter and regions between promoter and the Alu elements, and hypermethylation in the Alu elements, were identified in the normal tissues. MLH1 promoter methylation may spread from Alu elements that are located in intron 1 of the MLH1 gene. The trans-acting elements binding to the mutation sites could play a role in the methylation spreading.  相似文献   

17.
A comprehensive analysis of somatic and germline mutations related to DNA mismatch-repair (MMR) genes can clarify the prevalence and mechanism of inactivation in colorectal carcinoma (CRC). In the present study, 257 unselected patients referred for CRC resection were examined for evidence of defective DNA MMR. In particular, we sought to determine the frequency of hereditary defects in DNA MMR in this cohort of patients. MMR status was assessed by testing of tumors for the presence or absence of hMLH1, hMSH2, and hMSH6 protein expression and for microsatellite instability (MSI). Of the 257 patients, 51 (20%) had evidence of defective MMR, demonstrating high levels of MSI (MSI-H) and an absence of either hMLH1 (n=48) or hMSH2 (n=3). All three patients lacking hMSH2, as well as one patient lacking hMLH1, also demonstrated an absence of hMSH6. DNA sequence analysis of the 51 patients with defective MMR revealed seven germline mutations-four in hMLH1 (two truncating and two missense) and three in hMSH2 (all truncating). A detailed family history was available for 225 of the 257 patients. Of the seven patients with germline mutations, only three had family histories consistent with hereditary nonpolyposis colorectal cancer. Of the remaining patients who had tumors with defective MMR, eight had somatic mutations in hMLH1. In addition, hypermethylation of the hMLH1 gene promoter was present in 37 (88%) of the 42 hMLH1-negative cases available for study and in all MSI-H tumors that showed loss of hMLH1 expression but no detectable hMLH1 mutations. Our results suggest that, although defective DNA MMR occurs in approximately 20% of unselected patients presenting for CRC resection, hereditary CRC due to mutations in the MMR pathway account for only a small proportion of patients. Of the 257 patients, only 5 (1.9%) appear to have unequivocal evidence of hereditary defects in MMR. The epigenetic (nonhereditary) mechanism of hMLH1 promoter hypermethylation appears to be responsible for the majority of the remaining patients whose tumors are characterized by defective DNA MMR.  相似文献   

18.

Background

Lynch syndrome (LS) is a hereditary condition that increases the risk for endometrial and other cancers. The identification of endometrial cancer (EC) patients with LS has the potential to influence life-saving interventions. We aimed to study the prevalence of LS among EC patients in our population.

Methods

Universal screening for LS was applied for a consecutive series EC. Tumor testing using microsatellite instability (MSI), immunohistochemistry (IHC) for mismatch-repair (MMR) protein expression and MLH1-methylation analysis, when required, was used to select LS-suspicious cases. Sequencing of corresponding MMR genes was performed.

Results

One hundred and seventy-three EC (average age, 63 years) were screened. Sixty-one patients (35%) had abnormal IHC or MSI results. After MLH1 methylation analysis, 27 cases were considered suspicious of LS. From these, 22 were contacted and referred for genetic counseling. Nineteen pursued genetic testing and eight were diagnosed of LS. Mutations were more frequent in younger patients (<50 yrs). Three cases had either intact IHC or MSS and reinforce the need of implement the EC screening with both techniques.

Conclusion

The prevalence of LS among EC patients was 4.6% (8/173); with a predictive frequency of 6.6% in the Spanish population. Universal screening of EC for LS is recommended.  相似文献   

19.

Background

To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown.

Methods

This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS).

Results

By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3'' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis.

Conclusions

CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.  相似文献   

20.
Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号