共查询到20条相似文献,搜索用时 0 毫秒
1.
Yihui Wang Qingchao Tang Mingqi Li Shixiong Jiang Xishan Wang 《Biochemical and biophysical research communications》2014
Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway. 相似文献
2.
Sohn D Totzke G Essmann F Schulze-Osthoff K Levkau B Jänicke RU 《Molecular and cellular biology》2006,26(5):1967-1978
Due to their tremendous apoptosis-inducing potential, proteasomal inhibitors (PIs) have recently entered clinical trials. Here we show, however, that various PIs rescued proliferating tumor cells from death receptor-induced apoptosis. This protection correlated with the stabilization of X-linked IAP (XIAP) and c-FLIP and the inhibition of caspase activation. Together with the observation that PIs could not protect cells expressing XIAP or c-FLIP short interfering RNAs (siRNAs) from death receptor-induced apoptosis, our results demonstrate that PIs mediate their protective effect via the stabilization of these antiapoptotic proteins. Furthermore, we show that once these proteins were eliminated, either by long-term treatment with death receptor ligands or by siRNA-mediated suppression, active caspases accumulated to an even larger extent in the presence of PIs. Together, our data support a biphasic role for the proteasome in apoptosis, as they show that its constitutive activity is crucial for the rapid initiation of the death program by eliminating antiapoptotic proteins, whereas at later stages, the proteasome acts in an antiapoptotic manner due to the proteolysis of caspases. Thus, for a successful PI-based tumor therapy, it is crucial to carefully evaluate basal proteasomal activity and the status of antiapoptotic proteins, as their PI-mediated prolonged stability might even cause adverse effects, leading to the survival of a tumor. 相似文献
3.
In the present study, we report the identification and characterization of MEX (MEKK1-related protein X), a protein with homology to MEKK1 that is expressed uniquely in the testis. MEX is comprises four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain of unknown function and two RING (really interesting new gene) fingers separated by a ZZ zinc finger domain. Biochemical analyses revealed that MEX is self-ubiquitinated and targeted for degradation through the proteasome pathway. MEX can act as an E3, Ub (ubiquitin) ligase, through the E2, Ub-conjugating enzymes UbcH5a, UbcH5c or UbcH6. A region of MEX that contains the RING fingers and the ZZ zinc finger was required for interaction with UbcH5a and MEX self-association, whereas the SWIM domain was critical for MEX ubiquitination. The expression of MEX promoted apoptosis that was induced through Fas, DR (death receptor) 3 and DR4 signalling, but not that mediated by the BH3 (Bcl-2 homology 3)-only protein BimEL or the chemotherapeutic drug adriamycin. The enhancement of apoptosis by MEX required a functional SWIM domain, suggesting that MEX ubiquitination is critical for the enhancement of apoptosis. These results indicate that MEX acts as an E3 Ub ligase, an activity that is dependent on the SWIM domain and suggest a role for MEX in the regulation of death receptor-induced apoptosis in the testes. 相似文献
4.
c-FLIPR, a new regulator of death receptor-induced apoptosis 总被引:12,自引:0,他引:12
Golks A Brenner D Fritsch C Krammer PH Lavrik IN 《The Journal of biological chemistry》2005,280(15):14507-14513
c-FLIPs (c-FLICE inhibitory proteins) play an essential role in regulation of death receptor-induced apoptosis. Multiple splice variants of c-FLIP have been described on the mRNA level; so far only two of them, c-FLIP(L) and c-FLIP(S,) had been found to be expressed at the protein level. In this report, we reveal the endogenous expression of a third isoform of c-FLIP. We demonstrate its presence in a number of T and B cell lines as well as in primary human T cells. We identified this isoform as c-FLIP(R), a death effector domain-only splice variant previously identified on the mRNA level. Impor-/tantly, c-FLIP(R) is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex upon CD95 stimulation. Several properties of c-FLIP(R) are similar to c-FLIP(S): both isoforms have a short half-life, a similar pattern of expression during activation of primary human T cells, and are strongly induced in T cells upon CD3/CD28 costimulation. Taken together, our data demonstrate endogenous expression of c-FLIP(R) and similar roles of c-FLIP(R) and c-FLIP(S) isoforms in death receptor-mediated apoptosis. 相似文献
5.
《基因组蛋白质组与生物信息学报(英文版)》2017,(2)
Mutated genes are rarely common even in the same pathological type between cancer patients and as such, it has been very challenging to interpret genome sequencing data and difficult to predict clinical outcomes. PIK3 CA is one of a few genes whose mutations are relatively popular in tumors. For example, more than 46.6% of luminal-A breast cancer samples have PIK3 CA mutated, whereas only 35.5% of all breast cancer samples contain PIK3 CA mutations. To understand the function of PIK3 CA mutations in luminal A breast cancer, we applied our recentlyproposed Cancer Hallmark Network Framework to investigate the network motifs in the PIK3CA-mutated luminal A tumors. We found that more than 70% of the PIK3CA-mutated luminal A tumors contain a positive regulatory loop where a master regulator(PDGF-D), a second regulator(FLT1) and an output node(SHC1) work together. Importantly, we found the luminal A breast cancer patients harboring the PIK3 CA mutation and this positive regulatory loop in their tumors have significantly longer survival than those harboring PIK3 CA mutation only in their tumors. These findings suggest that the underlying molecular mechanism of PIK3 CA mutations in luminal A patients can participate in a positive regulatory loop, and furthermore the positive regulatory loop(PDGF-D/FLT1/SHC1) has a predictive power for the survival of the PIK3 CAmutated luminal A patients. 相似文献
6.
Boxiao Ding Anita Parmigiani Chen Yang Andrei V Budanov 《Cell cycle (Georgetown, Tex.)》2015,14(20):3231-3241
Apoptosis plays a critical physiological role in controlling cell number and eliminating damaged, non-functional and transformed cells. Cancerous cells as well as some types of normal cells are often resistant to cell death induced by pro-inflammatory cytokines through death receptors. This potentially allows cancer cells to evade the control from the immune system and to proceed toward a more malignant stage, although the mechanisms of this evasion are not well established. We have recently identified the stress-responsive Sestrin2 protein as a critical regulator of cell viability under stress conditions. Sestrin2 is a member of a small family of antioxidant proteins and inhibitors of mechanistic Target of Rapamycin Complex 1 (mTORC1) kinase. Down-regulation of Sestrin1/2 leads to genetic instability and accelerates the growth of lung adenocarcinoma xenografts. Here we addressed the potential role of Sestrin2 in regulation of cell death induced by TNFR1 and related Fas and TRAIL receptors in lung adenocarcinoma cells. We found that Sestrin2 silencing strongly inhibits cytokine-induced cell death through a mechanism independent of ROS and mTORC1 regulation. We determined that the X-linked inhibitor of apoptosis protein (XIAP) plays a critical role in the control of cytokine-induced cell death by Sestrin2. Thus our study defines a new, previously unrecognized role of Sestrin2 in the regulation of apoptosis. 相似文献
7.
Qinyi Qian Hao Zhou Yan Chen Chenglong Shen Songbing He Hua Zhao Liang Wang Daiwei Wan Wen Gu 《Biochemical and biophysical research communications》2014
Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death. 相似文献
8.
Limami Y Pinon A Leger DY Mousseau Y Cook-Moreau J Beneytout JL Delage C Liagre B Simon A 《Biochimie》2011,93(4):749-757
Colorectal cancer is one of the most common cancer types and the third leading cause of cancer-related death in the western world. Generally, colorectal cancers are resistant to anticancer drugs. Several lines of evidence support a critical role for cyclooxygenase-2 (COX-2) during colorectal tumorigenesis and its role in chemoresistance. In this study, we focused our interest on the role played by COX-2 in apoptosis induced in HT-29 human colorectal cancer cells by ursolic acid (UA), a triterpenoid found in a large variety of plants. We showed that UA-induced apoptosis and that COX-2 was overexpressed only in apoptotic cells. We demonstrated that this overexpression was mediated by the p38 MAP kinase pathway as inhibiting its activation using a p38-specific inhibitor, SB 203580, abrogated COX-2 expression. Inhibiting COX-2 expression either by using a p38-specific inhibitor or COX-2-specific siRNA increased apoptosis. These results demonstrated that COX-2 was involved in a resistance mechanism to UA-induced apoptosis in HT-29 cells. Cells undergoing apoptosis were able to trigger a resistance mechanism by overexpressing a protein such as COX-2 to delay their death. Furthermore, we demonstrated that this resistance mechanism was independent of PGE2 production as the addition of the specific COX-2 activity inhibitor, NS-398, did not affect apoptosis in UA-treated cells. 相似文献
9.
Patron JP Fendler A Bild M Jung U Müller H Arntzen MØ Piso C Stephan C Thiede B Mollenkopf HJ Jung K Kaufmann SH Schreiber J 《PloS one》2012,7(4):e35345
Despite the importance of microRNAs (miRs) for regulation of the delicate balance between cell proliferation and death, evidence for their specific involvement during death receptor (DR)-mediated apoptosis is scarce. Transfection with miR-133b rendered resistant HeLa cells sensitive to tumor necrosis factor-alpha (TNFα)-induced cell death. Similarly, miR-133b caused exacerbated proapoptotic responses to TNF-related apoptosis-inducing ligand (TRAIL) or an activating antibody to Fas/CD95. Comprehensive analysis, encompassing global RNA or protein expression profiling performed by microarray experiments and pulsed stable isotope labeling with amino acids in cell culture (pSILAC), led to the discovery of the antiapoptotic protein Fas apoptosis inhibitory molecule (FAIM) as immediate miR-133b target. Moreover, miR-133b impaired the expression of the detoxifying protein glutathione-S-transferase pi (GSTP1). Expression of miR-133b in tumor specimens of prostate cancer patients was significantly downregulated in 75% of the cases, when compared with matched healthy tissue. Furthermore, introduction of synthetic miR-133b into an ex-vivo model of prostate cancer resulted in impaired proliferation and cellular metabolic activity. PC3 cells were also sensitized to apoptotic stimuli after transfection with miR-133b similar to HeLa cells. These data reveal the ability of a single miR to influence major apoptosis pathways, suggesting an essential role for this molecule during cellular transformation, tumorigenesis and tissue homeostasis. 相似文献
10.
11.
I. N. Lavrik 《Molecular Biology》2011,45(1):150-155
Apoptosis (programmed cell death) is common to all multicellular organisms. Apoptosis plays a central role in cell differentiation,
removal of damaged cells, and the homeostasis of the immune system. There are two apoptosis signal pathways: the extrinsic
(transmitted through death receptors (DR)) or the intrinsic (mitochondrial) death pathways. A death receptor, CD95 (Fas/APO-1),
was discovered 20 years ago. This review is focused on the mechanisms of death receptor-induced apoptosis via CD95 (Fas/APO-1)-mediated
apoptosis and the role of the antiapoptotic protein c-FLIP in the extrinsic apoptosis regulation. The regulation of this pathway
is crucial for the immune system. Defects in the regulation of CD95-mediated result in serious diseases such as cancer, autoimmunity,
and AIDS. Therefore, gaining insights into apoptosis will have wide implications for developing approaches to treatment strategies
of these diseases. 相似文献
12.
Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis 总被引:1,自引:0,他引:1
Muppidi JR Lobito AA Ramaswamy M Yang JK Wang L Wu H Siegel RM 《Cell death and differentiation》2006,13(10):1641-1650
Death receptors in the TNF receptor superfamily signal for apoptosis via the ordered recruitment of FADD and caspase-8 to a death-inducing signaling complex (DISC). However, the nature of the protein-protein interactions in the signaling complex is not well defined. Here we show that FADD self-associates through a conserved RXDLL motif in the death effector domain (DED). Despite exhibiting similar binding to both Fas and caspase-8 and preserved overall secondary structure, FADD RDXLL motif mutants cannot reconstitute FasL- or TRAIL-induced apoptosis and fail to recruit caspase-8 into the DISC of reconstituted FADD-deficient cells. Abolishing self-association can transform FADD into a dominant-negative mutant that interferes with Fas-induced apoptosis and formation of microscopically visible receptor oligomers. These findings suggest that lateral interactions among adapter molecules are required for death receptor apoptosis signaling and implicate self-association into oligomeric assemblies as a key function of death receptor adapter proteins in initiating apoptosis. 相似文献
13.
Snow AL Lambert SL Natkunam Y Esquivel CO Krams SM Martinez OM 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(5):3283-3293
The relationship between EBV infection and sensitivity to death receptor (DR)-induced apoptosis is poorly understood. Using EBV- and EBV+ BJAB cells, we provide the first evidence that EBV can protect latently infected B cell lymphomas from apoptosis triggered through Fas or TRAIL receptors. Caspase 8 activation was impaired and cellular FLIP recruitment was enriched in death-inducing signaling complexes formed in EBV-infected BJAB cells relative to parent BJAB cells. Furthermore, latent membrane protein 1 expression alone could reduce caspase activation and confer partial resistance to DR apoptosis in BJAB cells. This protective effect was dependent on C-terminal activating region 2-driven NF-kappaB activation, which in turn up-regulated cellular FLIP expression in latent membrane protein 1+ BJAB cells. Thus, the ability of latent EBV to block DR apoptosis may help to ensure the survival of host cells during B cell differentiation, and contribute to the development of B cell lymphomas, especially in immunocompromised individuals. 相似文献
14.
Induced apoptosis in the prevention of colorectal cancer by non-steroidal anti-inflammatory drugs 总被引:6,自引:1,他引:6
Elder DJ Paraskeva C 《Apoptosis : an international journal on programmed cell death》1999,4(5):365-372
Epidemiological, clinical and animal studies indicate non-steroidal anti-inflammatory drugs (NSAIDs) to be chemopreventive for colorectal cancer. The best established target for NSAIDs are the two isoforms of cyclooxygenase (COX), a key enzyme in the biosynthesis of prostaglandins. Recent investigations using human colorectal tumor cell lines have focused on the cellular and molecular mechanisms potentially underlying the chemopreventive effect of NSAIDs. These studies have used traditional NSAIDs and their metabolites which either do not inhibit COX, are non-selective for the COX isoforms or selectively inhibit COX-1 over COX-2, and recently developed NSAIDs that are highly selective for COX-2. In vitro, apoptosis is the dominant anti-proliferative effect of each of these classes of NSAID and sensitivity to NSAID-induced apoptosis increases with the malignant potential of the tumor cells. Limited in vivo evidence backs up these findings. Cell cycle arrest also contributes to the in vitro growth inhibitory effect of traditional NSAIDs. The induction of apoptosis by NSAIDs may result from the inhibition of the COX isoforms but other as yet undefined paths to NSAID-induced apoptosis clearly exist. A member of each class of NSAID is under trial as a chemopreventive agent for colorectal cancer. 相似文献
15.
Celecoxib, a clinical non-steroidal anti-inflammatory drug, displays anticarcinogenic and chemopreventive activities in human colorectal cancers, although the mechanisms of apoptosis by celecoxib are poorly understood. The existence of functional p53 but not securin in colorectal cancer cells was higher on the induction of cytotoxicity than the p53-mutational colorectal cancer cells following celecoxib treatment. The p53-wild type HCT116 cells were more susceptible to increase ∼25% cell death than the p53-null HCT116 cells after treatment with 100 μM celecoxib for 24 h. Transfection with a small interfering RNA of p53 reduced the celecoxib-induced cytotoxicity in the RKO (p53-wild type) colorectal cancer cells. Celecoxib (80-100 μM for 24 h) significantly increased total p53 proteins and the phosphorylated p53 proteins at serine-15, -20, -46, and -392 in RKO cells. However, the phospho-p53 (serine-15, -20, and -392) proteins were presented on the nuclei of cells but the phospho-p53 (serine-46) protein was located on the cytoplasma of apoptotic cells following treatment with celecoxib. Interestingly, the p53 up-regulated modulator of apoptosis (PUMA) protein, which located on the mitochondria, was induced by celecoxib in the p53-functional colorectal cancer cells but not in the p53-mutational cells. Together, this study provides the first time that celecoxib induces the various phosphorylated sites of p53 and activates p53-PUMA pathway, which potentiates the apoptosis induction in human colorectal cancer cells. 相似文献
16.
D. Cunningham 《BMJ (Clinical research ed.)》1989,299(6714):1479-1480
17.
Emelyanova M. A. Amossenko F. A. Semyanikhina A. V. Aliev V. A. Barsukov Yu. A. Lyubchenko L. N. Nasedkina T. V. 《Molecular Biology》2015,49(4):550-559
Molecular Biology - Somatic mutations of KRAS, PIK3CA, and BRAF cause insensitivity of colorectal tumors to therapy with anti-EGFR monoclonal antibodies, necessitating a genetic testing prior to... 相似文献
18.
Fang Huang Chunlai Nie Yang Yang Wen Yue Yun Ren Yingli Shang Xiaohui Wang Haijing Jin Caimin Xu Quan Chen 《Free radical biology & medicine》2009,46(8):1186-1196
Emerging evidence suggests that selenium has chemotherapeutic potential by inducing cancer cell apoptosis with minimal side effects to normal cells. However, the mechanism by which selenium induces apoptosis is not well understood. We have investigated the role of Bax, a Bcl-2 family protein and a critical regulator of the mitochondrial apoptotic pathway, in selenite-induced apoptosis in colorectal cancer cells. We found that supranutritional doses of selenite could induce typical apoptosis in colorectal cancer cells in vitro and in xenograft tumors. Selenite triggers a conformational change in Bax, as detected by the 6A7 antibody, and leads to Bax translocation into the mitochondria, where Bax forms oligomers to mediate cytochrome c release. Importantly, we show that the two conserved cysteine residues of Bax seem to be critical for sensing the intracellular ROS to initiate Bax conformational changes and subsequent apoptosis. Our results show for the first time that selenite can activate the apoptotic machinery through redox-dependent activation of Bax and further suggest that selenite could be useful in cancer therapy. 相似文献
19.
Eichhorst ST Krueger A Müerköster S Fas SC Golks A Gruetzner U Schubert L Opelz C Bilzer M Gerbes AL Krammer PH 《Nature medicine》2004,10(6):602-609
Suramin is a polysulfonated derivative of urea and has been widely used both to treat infections and as a chemotherapeutic drug. Suramin has been shown to inhibit growth factor signaling pathways; however, its effect on apoptosis is unknown. Here we show that suramin inhibits apoptosis induced through death receptors in hepatoma and lymphoma cells. It also inhibits the proapoptotic effect of chemotherapeutic drugs. The antiapoptotic mechanism is specific to cell type and is caused by reduced activation, but not altered composition, of the death-inducing signaling complex (DISC), and by inhibition of the initiator caspases 8, 9 and 10. Suramin also shows similar effects in in vivo models: apoptotic liver damage induced by CD95 stimulation and endotoxic shock mediated by tumor-necrosis factor (TNF) are inhibited in mice, but necrotic liver damage is not inhibited in a rat model of liver transplantation. Thus, the antiapoptotic property of suramin in the liver may be therapeutically exploited. 相似文献