首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA. These data provide evidence that JA is required for male sex determination and suppression of female reproductive organ biogenesis. Moreover, opr7 opr8 exhibited delayed leaf senescence accompanied by reduced ethylene and abscisic acid levels and lack of anthocyanin pigmentation of brace roots. Remarkably, opr7 opr8 is nonviable in nonsterile soil and under field conditions due to extreme susceptibility to a root-rotting oomycete (Pythium spp), demonstrating that these genes are necessary for maize survival in nature. Supporting the importance of JA in insect defense, opr7 opr8 is susceptible to beet armyworm. Overall, this study provides strong genetic evidence for the global roles of JA in maize development and immunity to pathogens and insects.  相似文献   

2.
3.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

4.
Although it is well known that jasmonic acid (JA) and cytokinin (CK) are involved in regulating leaf senescence, the antagonistic mechanisms of JA and CK on leaf senescence are still unknown. To explore the antagonistic effects of JA and CK on leaf senescence, we treated detached rice flag leaves with JA and CK under dark conditions, and evaluated their chlorophyll contents, membrane deterioration, and expression levels of chlorophyll-degradation-related genes (CDRGs) and senescence-associated genes (SAGs). Our results demonstrated that exogenous application of JA promoted chlorophyll degradation by enhancing the expression levels of CDRGs, promoted membrane deterioration by accelerating the increases in lipid peroxidation and membrane permeability, enhanced the expression levels of SAGs, and consequently accelerated rice flag leaf senescence. On the other hand, exogenous application of CK retarded chlorophyll degradation by down-regulating the expression levels of CDRGs, retarded membrane deterioration by retarding the increases in lipid peroxidation and membrane permeability, down-regulated the expression levels of SAGs, and consequently delayed rice flag leaf senescence. Furthermore, the senescence-accelerating effect of a certain concentration of JA was nullified by the senescence-retarding effect of a certain concentration of CK. These results suggested that exogenous applications of JA and CK were able to antagonistically regulate flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and SAGs expression. In addition, our results suggested that the progression of flag leaf senescence might not only depend on the level of JA or CK but also depend on the balance between JA and CK.  相似文献   

5.
Peroxisome-localized oxo-phytodienoic acid (OPDA) reductases (OPR) are enzymes converting 12-OPDA into jasmonic acid (JA). However, the biochemical and physiological functions of the cytoplasmic non-JA producing OPRs remain largely unknown. Here, we generated Mutator-insertional mutants of the maize OPR2 gene and tested its role in resistance to pathogens with distinct lifestyles. Functional analyses showed that the opr2 mutants were more susceptible to the (hemi)biotrophic pathogens Colletotrichum graminicola and Ustilago maydis, but were more resistant to the necrotrophic fungus Cochliobolus heterostrophus. Hormone profiling revealed that increased susceptibility to C. graminicola was associated with decreased salicylic acid (SA) but increased JA levels. Mutation of the JA-producing lipoxygenase 10 (LOX10) reversed this phenotype in the opr2 mutant background, corroborating the notion that JA promotes susceptibility to this pathogen. Exogenous SA did not rescue normal resistance levels in opr2 mutants, suggesting that this SA-inducible gene is the key downstream component of the SA-mediated defences against C. graminicola. Disease assays of the single and double opr2 and lox10 mutants and the JA-deficient opr7opr8 mutants showed that OPR2 negatively regulates JA biosynthesis, and that JA is required for resistance against C. heterostrophus. Overall, this study uncovers a novel function of a non-JA producing OPR as a major negative regulator of JA biosynthesis during pathogen infection, a function that leads to its contrasting contribution to either resistance or susceptibility depending on pathogen lifestyle.  相似文献   

6.
植物激素茉莉素作为抗性信号调控植物对腐生性病原菌和昆虫的抗性, 作为发育信号调控植物根的生长、雄蕊发育、表皮毛形成和叶片衰老。茉莉素受体COI1识别茉莉素分子, 进而与JAZ蛋白互作并诱导其降解, 继而调控多种茉莉素反应。拟南芥(Arabidopsis thaliana) IIId亚组bHLH转录因子(bHLH3、bHLH13、bHLH14和bHLH17)是JAZ的一类靶蛋白。与野生型相比, IIId亚组bHLH转录因子的单突变体对灰霉菌和甜菜夜蛾的抗性无明显差异, 而四突变体对灰霉菌和甜菜夜蛾的抗性增强。该文通过高表达bHLH17并研究其对灰霉菌和甜菜夜蛾的抗性反应, 结果显示, 被灰霉菌侵染的bHLH17高表达植株较野生型表现出更严重的病症。取食bHLH17高表达植株叶片的甜菜夜蛾幼虫体重大于取食野生型叶片的幼虫体重。bHLH17高表达抑制了茉莉素诱导的抗性相关基因(Thi2.1)和伤害响应基因(VSP2、AOS、JAZ1、JAZ9和JAZ10)的表达。原生质体转化实验显示bHLH17通过其N端行使转录抑制功能。研究结果表明, IIId亚组bHLH转录抑制因子bHLH17高表达会负调控茉莉素介导的对灰霉菌和甜菜夜蛾的抗性。  相似文献   

7.
Jasmonate (JA) regulates various plant defense and developmental processes. The F-box protein CORONATINE INSENSITIVE 1 (COI1) perceives JA signals to mediate diverse plant responses including male fertility, root growth, anthocyanin accumulation, and defense against abiotic and biotic stresses. In this study, we carried out genetic, physiological and biochemical analysis on a series of coi1 mutant alleles, and found that different amino acid mutations in COI1 distinctively affect JA-regulated male fertility in Arabidopsis. All the JA responses are disrupted by the COI1 mutations W467* in coi1-1, Q343* (coi1-6), G369E (coi1-4), G98D (coi1-5), G155E (coi1-7), D452A (coi1-9) and L490A (coi1-10), though the coi1-5 mutant (COI1G98D) contains adequate COI1 protein (~60% of wild-type). Interestingly, the low basal level of COI1E543K in the coi1-8 mutant (~10% of wild-type COI1 level) is sufficient for maintaining male fertility (~50% of wild-type fertility); the coi1-2 mutant with low level of COI1L245F (~10% of wild-type) is male sterile under normal growth condition (22°C) but male fertile (~80% of wild-type fertility) at low temperature (16°C); however, both coi1-2 and coi1-8 are defective in the other JA responses (root growth, anthocyanin accumulation, and plant response to the pathogen Pst DC3000 infection).  相似文献   

8.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

9.
10.
Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.  相似文献   

11.
Xiao S  Dai L  Liu F  Wang Z  Peng W  Xie D 《The Plant cell》2004,16(5):1132-1142
The Arabidopsis thaliana CORONATINE INSENSITIVE1 (COI1) gene encodes an F-box protein to assemble SCF(COI1) complexes essential for response to jasmonates (JAs), which are a family of plant signaling molecules required for many essential functions, including plant defense and reproduction. To better understand the molecular basis of JA action, we screened for suppressors of coi1 and isolated a coi1 suppressor1 (cos1) mutant. The cos1 mutation restores the coi1-related phenotypes, including defects in JA sensitivity, senescence, and plant defense responses. The COS1 gene was cloned through a map-based approach and found to encode lumazine synthase, a key component in the riboflavin pathway that is essential for diverse yet critical cellular processes. We demonstrated a novel function for the riboflavin pathway that acts downstream of COI1 in the JA signaling pathway and is required for suppression of the COI1-mediated root growth, senescence, and plant defense.  相似文献   

12.
13.
14.
Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.  相似文献   

15.
Root-knot nematodes (RKN) are severe pests of maize. Although lipoxygenase (LOX) pathways and their oxylipin products have been implicated in plant-nematode interactions, prior to this report there was no conclusive genetic evidence for the function of any plant LOX gene in such interactions. We showed that expression of a maize 9-LOX gene, ZmLOX3, increased steadily and peaked at 7 days after inoculation with Meloidogyne incognita RKN. Mu-insertional lox3-4 mutants displayed increased attractiveness to RKN and an increased number of juveniles and eggs. A set of jasmonic acid (JA)- and ethylene (ET)-responsive and biosynthetic genes as well as salicylic acid (SA)-dependent genes were overexpressed specifically in the roots of lox3-4 mutants. Consistent with this, levels of JA, SA, and ET were elevated in lox3-4 mutant roots, but not in leaves. Unlike wild types, in lox3-4 mutant roots, a phenylalanine ammonia lyase (PAL) gene was not RKN-inducible, suggesting a role for PAL-mediated metabolism in nematode resistance. In addition to these alterations in the defense status of roots, lox3-4 knockout mutants displayed precocious senescence and reduced root length and plant height compared with the wild type, suggesting that ZmLOX3 is required for normal plant development. Taken together, our data indicate that the ZmLOX3-mediated pathway may act as a root-specific suppressor of all three major defense signaling pathways to channel plant energy into growth processes, but is required for normal levels of resistance against nematodes.  相似文献   

16.
17.
18.
19.
Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning.  相似文献   

20.
HOPs (HSP70–HSP90 organizing proteins) are a highly conserved family of HSP70 and HSP90 co-chaperones whose role in assisting the folding of various hormonal receptors has been extensively studied in mammals. In plants, HOPs are mainly associated with stress response, but their potential involvement in hormonal networks remains completely unexplored. In this article we describe that a member of the HOP family, HOP3, is involved in the jasmonic acid (JA) pathway and is linked to plant defense responses not only to pathogens, but also to a generalist herbivore. The JA pathway regulates responses to Botrytis cinerea infection and to Tetranychus urticae feeding; our data demonstrate that the Arabidopsis (Arabidopsis thaliana) hop3-1 mutant shows an increased susceptibility to both. The hop3-1 mutant exhibits reduced sensitivity to JA derivatives in root growth assays and downregulation of different JA-responsive genes in response to methyl jasmonate, further revealing the relevance of HOP3 in the JA pathway. Interestingly, yeast two-hybrid assays and in planta co-immunoprecipitation assays found that HOP3 interacts with COI1, suggesting that COI1 is a target of HOP3. Consistent with this observation, COI1 activity is reduced in the hop3-1 mutant. All these data strongly suggest that, specifically among HOPs, HOP3 plays a relevant role in the JA pathway by regulating COI1 activity in response to JA and, consequently, participating in defense signaling to biotic stresses.

One-sentence summary: The co-chaperone protein HOP3 (HSP70-HSP90 ORGANIZING PROTEIN 3) regulates the activity of jasmonic acid co-receptor CORONATINE INSENSITIVE 1 and functions in plant defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号