首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Nonstop, which has previously been shown to have homology to ubiquitin proteases, is required for proper termination of axons R1-R6 in the optic lobe of the developing Drosophila eye. Herein, we establish that Nonstop actually functions as an ubiquitin protease to control the levels of ubiquitinated histone H2B in flies. We further establish that Nonstop is the functional homolog of yeast Ubp8, and can substitute for Ubp8 function in yeast cells. In yeast, Ubp8 activity requires Sgf11. We show that in Drosophila, loss of Sgf11 function causes similar photoreceptor axon-targeting defects as loss of Nonstop. Ubp8 and Sgf11 are components of the yeast SAGA complex, suggesting that Nonstop function might be mediated through the Drosophila SAGA complex. Indeed, we find that Nonstop does associate with SAGA components in flies, and mutants in other SAGA subunits display nonstop phenotypes, indicating that SAGA complex is required for accurate axon guidance in the optic lobe. Candidate genes regulated by SAGA that may be required for correct axon targeting were identified by microarray analysis of gene expression in SAGA mutants.  相似文献   

3.
4.
5.
Gcn5 is a conserved histone acetyltransferase (HAT) found in a number of multisubunit complexes from Saccharomyces cerevisiae, mammals, and flies. We previously identified Drosophila melanogaster homologues of the yeast proteins Ada2, Ada3, Spt3, and Tra1 and showed that they associate with dGcn5 to form at least two distinct HAT complexes. There are two different Ada2 homologues in Drosophila named dAda2A and dAda2B. dAda2B functions within the Drosophila version of the SAGA complex (dSAGA). To gain insight into dAda2A function, we sought to identify novel components of the complex containing this protein, ATAC (Ada two A containing) complex. Affinity purification and mass spectrometry revealed that, in addition to dAda3 and dGcn5, host cell factor (dHCF) and a novel SANT domain protein, named Atac1 (ATAC component 1), copurify with this complex. Coimmunoprecipitation experiments confirmed that these proteins associate with dGcn5 and dAda2A, but not with dSAGA-specific components such as dAda2B and dSpt3. Biochemical fractionation revealed that ATAC has an apparent molecular mass of 700 kDa and contains dAda2A, dGcn5, dAda3, dHCF, and Atac1 as stable subunits. Thus, ATAC represents a novel histone acetyltransferase complex that is distinct from previously purified Gcn5/Pcaf-containing complexes from yeast and mammalian cells.  相似文献   

6.
We have identified two Gcn5-dependent histone acetyltransferase (HAT) complexes from Saccharomyces cerevisiae, the 0.8-MDa ADA complex and the 1.8-MDa SAGA complex. The SAGA (Spt-Ada-Gcn5-acetyltransferase) complex contains several subunits which also function as part of other protein complexes, including a subset of TATA box binding protein-associated factors (TAFIIs) and Tra1. These observations raise the question of whether the 0.8-MDa ADA complex is a subcomplex of SAGA or whether it is a distinct HAT complex that also shares subunits with SAGA. To address this issue, we sought to determine if the ADA complex contained subunits that are not present in the SAGA complex. In this study, we report the purification of the ADA complex over 10 chromatographic steps. By a combination of mass spectrometry analysis and immunoblotting, we demonstrate that the adapter proteins Ada2, Ada3, and Gcn5 are indeed integral components of ADA. Furthermore, we identify the product of the S. cerevisiae gene YOR023C as a novel subunit of the ADA complex and name it Ahc1 for ADA HAT complex component 1. Biochemical functions of YOR023C have not been reported. However, AHC1 in high copy numbers suppresses the cold sensitivity caused by particular mutations in HTA1 (I. Pinto and F. Winston, personal communication), which encodes histone H2A (J. N. Hirschhorn et al., Mol. Cell. Biol. 15:1999-2009, 1995). Deletion of AHC1 disrupted the integrity of the ADA complex but did not affect SAGA or give rise to classic Ada(-) phenotypes. These results indicate that Gcn5, Ada2, and Ada3 function as part of a unique HAT complex (ADA) and represent shared subunits between this complex and SAGA.  相似文献   

7.
8.
9.
E E Vamos  IM Boros 《FEBS letters》2012,586(19):3279-3286
ADA2 adaptor proteins are essential subunits of GCN5-containing histone acetyltransferase (HAT) complexes. In metazoa ADA2a is present in the histone H4-specific ATAC, and ADA2b in the histone H3-specific SAGA complex. Using domain-swapped ADA2 chimeras, we determined that the in vivo function of Drosophila melanogaster SAGA and ATAC HAT complexes depend on the C-terminal region of the ADA2 subunit they contain. Our findings demonstrate that the ADA2 C-terminal regions play an important role in the specific incorporation of ADA2 into SAGA- or ATAC-type complexes, which in turn determines H3- or H4-specific histone targeting.  相似文献   

10.
Drosophila has provided a powerful genetic system in which to elucidate fundamental cellular pathways in the context of a developing and functioning nervous system. Recently, Drosophila has been applied toward elucidating mechanisms of human neurodegenerative disease, including Alzheimer's, Parkinson's and Huntington's diseases. Drosophila allows study of the normal function of disease proteins, as well as study of effects of familial mutations upon targeted expression of human mutant forms in the fly. These studies have revealed new insight into the normal functions of such disease proteins, as well as provided models in Drosophila that will allow genetic approaches to be applied toward elucidating ways to prevent or delay toxic effects of such disease proteins. These, and studies to come that follow from the recently completed sequence of the Drosophila genome, underscore the contributions that Drosophila as a model genetic system stands to contribute toward the understanding of human neurodegenerative disease.  相似文献   

11.
12.
周幸  周楠  余垚  吕红 《遗传》2014,36(2):169-181
SAGA(Spt-Ada-Gcn5 Acetyltransferase complex)是一个多亚基保守的转录复合物, 在裂殖酵母(Schizosaccharomyces pombe)里由19个亚基组成, 调控体内10%基因的转录。文章通过构建原位整合荧光菌株, 完整地分析了SAGA所有亚基的亚细胞荧光定位。荧光数据显示这些亚基的定位可分为4种类型, 提示SAGA亚基除共同参与转录调控之外, 可能还有其他功能。SAGA亚基Sgf73是联系去泛素化模块与SAGA其他模块的桥梁, 它的缺失不仅明显减少了去泛素化亚基Ubp8、Sgf11、Sus1核内的定位, 同时也影响了乙酰化亚基Gcn5、Sgf29、Ngg1以及核心结构亚基Spt7在细胞核内的定位, 这提示Sgf73对维持SAGA的酶学功能和稳定性至关重要。另外, sgf73+的缺失还造成了胞质分裂的缺陷, 导致细胞出现多核多膈膜表型。在△sgf73里过量表达膈膜降解途径中的关键基因ace2+和mid2+的回补结果表明, ace2+不能回补sgf73+缺失造成的缺陷, 而mid2+也仅能部分回补, 提示Sgf73可能还通过其他途径影响了胞质分裂。  相似文献   

13.
14.
15.
16.
Tuberous sclerosis complex (TSC) is a human syndrome characterized by a widespread development of benign tumors. This disease is caused by mutations in the TSC1 or TSC2 tumor suppressor genes; the molecular mechanisms underlying the activity of these have long been elusive. Recent studies of Drosophila and mammalian cells demonstrate that the TSC1-TSC2 complex functions as GTPase activating protein against Rheb - a Ras-like small GTPase, which in turn regulates TOR signaling in nutrient-stimulated cell growth. These findings provide a new paradigm for how proteins involved in nutrient sensing could function as tumor suppressors and suggest novel therapeutic targets against TSC. Here, we review these exciting developments with an emphasis on Drosophila studies and discuss how Drosophila can be a powerful model system for an understanding of the molecular mechanisms of the activity of human disease genes.  相似文献   

17.
18.
19.
20.
The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号