首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《MABS-AUSTIN》2013,5(5):1145-1154
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules.  相似文献   

2.
Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103–1112, 2016  相似文献   

3.
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):578-585
The existence of multiple variants with differences in either charge, molecular weight or other properties is a common feature of monoclonal antibodies. These charge variants are generally referred to as acidic or basic compared with the main species. The chemical nature of the main species is usually well-understood, but understanding the chemical nature of acidic and basic species, and the differences between all three species, is critical for process development and formulation design. Complete understanding of acidic and basic species, however, is challenging because both species are known to contain multiple modifications, and it is likely that more modifications may be discovered. This review focuses on the current understanding of the modifications that can result in the generation of acidic and basic species and their affect on antibody structure, stability and biological functions. Chromatography elution profiles and several critical aspects regarding fraction collection and sample preparations necessary for detailed characterization are also discussed.  相似文献   

5.
The existence of multiple variants with differences in either charge, molecular weight or other properties is a common feature of monoclonal antibodies. These charge variants are generally referred to as acidic or basic compared with the main species. The chemical nature of the main species is usually well-understood, but understanding the chemical nature of acidic and basic species, and the differences between all three species, is critical for process development and formulation design. Complete understanding of acidic and basic species, however, is challenging because both species are known to contain multiple modifications, and it is likely that more modifications may be discovered. This review focuses on the current understanding of the modifications that can result in the generation of acidic and basic species and their affect on antibody structure, stability and biological functions. Chromatography elution profiles and several critical aspects regarding fraction collection and sample preparations necessary for detailed characterization are also discussed.  相似文献   

6.
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.  相似文献   

7.
A hypoxanthine-aminopterin-thymidine (HAT) sensitive human fusion partner cell line, HK-128 was established from a human plasmacytoma line, LICR-LON-HMy2 (HMy2). The HK-128 cells showed a 100% cloning efficiency. Fusion efficiency of HK-128 was so high that one hybridoma cell was produced by fusion of 105 cells of HK-128 with lymphocytes, obtained from lymph nodes of breast cancer patients. About 90% of the resulted hybridomas were IgG producers. The remainder revealed IgM producing activity, which was lost by long term culture. This result indicates that the HK-128 cell line has an advantage for making hybridoma cells producing IgG. Among ca. 7,000 hybridomas obtained by fusion of HK-128 with lymphocytes of a breast cancer patient, we could establish a hybridoma cell line which produced IgG specifically reacting to a human breast cancer cell line, MCF-7.  相似文献   

8.
Viral safety is a predominant concern for monoclonal antibodies (mAbs) and other recombinant proteins (RPs) with pharmaceutical applications. Certain commercial purification modules, such as nanofiltration and low-pH inactivation, have been observed to reliably clear greater than 4 log(10) of large enveloped viruses, including endogenous retrovirus. The concept of "bracketed generic clearance" has been proposed for these steps if it could be prospectively demonstrated that viral log(10) reduction value (LRV) is not impacted by operating parameters that can vary, within a reasonable range, between commercial processes. In the case of low-pH inactivation, a common step in mAb purification processes employed after protein A affinity chromatography, these parameters would include pH, time and temperature of incubation, the content of salts, protein concentration, aggregates, impurities, model protein pI, and buffer composition. In this report, we define bracketed generic clearance conditions, using a prospectively defined bracket/matrix approach, where low-pH inactivation consistently achieves >or=4.6 log(10) clearance of xenotropic murine leukemia virus (X-MLV), a model for rodent endogenous retrovirus. The mechanism of retrovirus inactivation by low-pH treatment was also investigated.  相似文献   

9.
《MABS-AUSTIN》2013,5(2):327-339
Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.  相似文献   

10.
采用山羊抗人IgG作为包被抗体,辣根过氧化物酶标记的山羊抗人IgG作为标记抗体,建立一种双抗体夹心法用于定量检测人源破伤风毒素单克隆抗体的IgG含量。以纯化的IgG作标准,用平行线法测得亲和层析纯化的人源破伤风毒素单克隆抗体G2的含量为0.512μg/ml,与分光光度法测得的结果基本一致。因而样品检测采用纯化G2作参考标准,制作标准曲线,测定了已知样品和未知样品的抗体含量。结果表明本法重复性好,特异性强,可定量测定培养及纯化样品中人源单克隆抗体的含量。  相似文献   

11.
The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.  相似文献   

12.
For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal (“afucosylation”). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.  相似文献   

13.
Deamidation of asparagine residues, a post-translational modification observed in proteins, is a common degradation pathway in monoclonal antibodies (mAbs). The kinetics of deamidation is influenced by primary sequence as well as secondary and tertiary folding. Analytical hydrophobic interaction chromatography (HIC) is used to evaluate hydrophobicity of candidate mAbs and uncover post-translational modifications. Using HIC, we discovered atypical heterogeneity in a highly hydrophobic molecule (mAb-1). Characterization of the different HIC fractions using LC/MS/MS revealed a stable succinimide intermediate species localized to an asparagine-glycine motif in the heavy chain binding region. The succinimide intermediate was stable in vitro at pH 7 and below and increased on storage at 25°C and 40°C. Biacore evaluation showed a decrease in binding affinity of the succinimide intermediate compared with the native asparagine molecule. In vivo studies of mAb-1 recovered from a pharmacokinetic study in cynomolgus monkeys revealed an unstable succinimide species and rapid conversion to aspartic/iso-aspartic acid. Mutation from asparagine to aspartic acid led to little loss in affinity. This study illustrates the importance of evaluating modifications of therapeutic mAbs both in vitro and in serum, the intended environment of the molecule. Potential mechanisms that stabilize the succinimide intermediate in vitro are discussed.  相似文献   

14.
CD83 is a 45-kDa glycoprotein and member of the immunoglobulin (Ig) superfamily. It is the best known marker for mature dendritic cells. Although the precise function of CD83 is not known, its selective expression and upregulation together with the costimulators CD80 and CD86 suggests an important role of CD83 in the induction of immune responses. To perform functional studies and to elucidate its mode of action it is vital to obtain recombinant expressed and highly purified CD83 molecules. Therefore, the external Ig domain of human CD83 (hCD83ext) was expressed as a GST fusion protein (GST-hCD83ext) and the soluble protein was purified under native conditions. The fusion protein was purified using GSTrap columns followed by anion-exchange chromatography. GST-hCD83ext was then cleaved using thrombin and soluble hCD83ext was further purified using GSTrap columns and finally by a preparative gel filtration as a polishing step and used for further characterization. The purified GST-hCD83 fusion protein was also used to generate monoclonal anti-CD83 antibodies in a rat system. Two different monoclonal antibodies were generated. Using these antibodies, CD83 was specifically recognized in FACS and Western blot analyses. Furthermore, we showed that native CD83 is glycosylated and that this glycosylation influences the binding of the antibodies in Western blot analyses. Finally, the purified hCD83ext protein was analyzed by one-dimensional NMR and these analyses strongly indicate that hCD83ext is folded and could therefore be used for further structural and functional studies.  相似文献   

15.
Therapeutic antibodies can undergo a variety of chemical modification reactions in vitro. Depending on the site of modification, either antigen binding or Fc-mediated functions can be affected. Oxidation of tryptophan residues is one of the post-translational modifications leading to altered antibody functionality. In this study, we examined the structural and functional properties of a therapeutic antibody construct and 2 affinity matured variants thereof. Two of the 3 antibodies carry an oxidation-prone tryptophan residue in the complementarity-determining region of the VL domain. We demonstrate the differences in the stability and bioactivity of the 3 antibodies, and reveal differential degradation pathways for the antibodies susceptible to oxidation.  相似文献   

16.
Resistance (low dose tolerance) to adjuvant arthritis was induced by intradermal immunization with 10 micrograms Mycobacterium tuberculosis administered 5 and 3 weeks before induction of arthritis. With the purpose of determining phenotypes of cells which participate in the maintenance of the induced resistance to adjuvant arthritis, tolerized rats were treated with two different anti-T-cell monoclonal antibodies. In tolerized rats, it was shown that anti-CD8 (OX8) antibodies, which caused an elimination of CD8+ lymphoid cells as determined by immunofluorescence analysis, made the rats responsive to an arthritogenic challenge with mycobacteria. Nine of 19 (47.4%) rats developed the disease as compared with 2 of 18 (11.1%) (P less than 0.05) in the control antibody-treated group. Also, in vivo treatment with anti-CD5 (OX19) monoclonal antibodies made the rats responsive to an arthritogenic challenge with mycobacteria. Nine of 15 (60%) anti-CD5-treated rats developed the disease as compared with 2 of 18 (11.1%) (P less than 0.01) rats in the control group. Immunofluorescence analysis performed after anti-CD5 treatment showed a reduction of staining of CD5+ cells as well as a down-regulation of the staining intensity of CD5 cell surface receptors on the remaining CD5+ cells. These data indicate that CD8+- as well as CD5+ cells participate in the maintenance of low dose tolerance to adjuvant arthritis.  相似文献   

17.
Protein posttranslational modifications critically regulate a range of physiological and disease processes. In addition to tyrosine, serine, and threonine phosphorylation, reversible N‐ε acylation and alkylation of protein lysine residues also modulate diverse aspects of cellular function. Studies of lysine acyl and alkyl modifications have focused on nuclear proteins in epigenetic regulation; however, lysine modifications are also prevalent on cytosolic proteins to serve increasingly apparent, although less understood roles in cell regulation. Here, the methyl‐lysine (meK) proteome of anucleate blood platelets is characterized. With high‐resolution, multiplex MS methods, 190 mono‐, di‐, and tri‐meK modifications are identified on 150 different platelet proteins—including 28 meK modifications quantified by tandem mass tag (TMT) labeling. In addition to identifying meK modifications on calmodulin (CaM), GRP78 (HSPA5, BiP), and EF1A1 that have been previously characterized in other cell types, more novel modifications are also uncovered on cofilin, drebin‐like protein (DBNL, Hip‐55), DOCK8, TRIM25, and numerous other cytoplasmic proteins. Together, the results and analyses support roles for lysine methylation in mediating cytoskeletal, translational, secretory, and other cellular processes. MS data for this study have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012217.  相似文献   

18.
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.  相似文献   

19.
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.  相似文献   

20.
The frequently occurring alteration of ganglioside expression in tumor cells has been implicated to play a role in the uncontrolled growth of these cells; antibodies to such gangliosides might affect tumor cell growth. We have studied the effect of IgM monoclonal antibodies to two glioma-associated gangliosides, GD3 and GM2, on cell proliferation of four human glioma cell lines and one renal tumor cell line. Of the two anti-ganglioside antibodies tested, only the anti-GD3 antibody resulted in a significant (p<0.005) inhibition of cell proliferation as measured by thymidine incorporation and Brd-U labeling, after 24[emsp4 ]h incubation. The effect was not dependent on any serum factor and no increased cell death was observed. All cell lines contained higher or similar amounts of GM2 than GD3, and both antigens were shown to be expressed on the cell surface and accessible to antibodies. The selective effect of anti-GD3 antibodies as contrasted to the inactivity of anti-GM2 antibodies suggests a possible role for ganglioside GD3 in tumor cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号