首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(6):1638-1648
K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-rasLA1 model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations.  相似文献   

2.
Melanotransferrin is a glycoprotein expressed at the cell membrane and secreted in the extracellular environment. Recombinant truncated form of membrane-bound melanotransferrin (sMTf) was reported to exert in vitro anti-angiogenic properties. Here we show that sMTf treatment leads to a 50% inhibition of neovascularization in Matrigel implants when stimulated by growth factors. Using a glioblastoma xenograft model, we demonstrate that sMTf delivery at 2.5 and 10 mg/kg/day by micro-osmotic pump inhibits tumor growth by 73% and 91%, respectively. In a lung carcinoma xenograft model, sMTf treatment at 2.5 and 10 mg/kg/day impeded tumor growth by 87% and 97%. Furthermore, subcutaneous glioblastoma and lung carcinoma tumors from mice treated with 10 mg/kg/day of sMTf present insignificant growth toward the study. In association with a reduction in endoglin mRNA expression, the hemoglobin content decreased by half in sMTf-treated glioblastoma tumors. In vitro experiments revealed that NCI-H460 cells treated with sMTf display an inhibition in their invasive capabilities with a concomitant reduction in the expression of the low-density lipoprotein receptor protein and urokinase plasminogen activator receptor. Altogether, our results demonstrate that sMTf exerts anti-cancer and anti-angiogenic activities, suggesting that its administration may provide novel therapeutic strategies for the treatment of cancer.  相似文献   

3.
The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3'-untranslated region (3'-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3'-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.  相似文献   

4.
血管生成是非小细胞肺癌(NSCLC)生长、复发和转移的关键环节。抗血管生成治疗可以通过使肿瘤血管及微环境正常化,改善肿瘤血供和含氧量,增强放、化疗效果。也可以抑制肿瘤内毛细血管生长,使肿瘤细胞进入休眠状态,并诱导其凋亡。因此,靶向抗血管生成已成为NSCLC治疗研究的主要方向。贝伐珠单抗和雷莫芦单抗已被批准用于联合一线标准化疗治疗局部晚期或转移性NSCLC。然而,在这一治疗过程中,肿瘤会逐渐对抗血管生成药物产生耐药,这可能与肿瘤微环境(tumor microenvironment,TME)的改变有关。最近,免疫检查点抑制剂(immune checkpoint inhibitors,ICI)已经取得了相当大的成功,但是反应率仍然被认为不是最佳的。因此,为了提高疗效,各种组合疗法正在测试中。临床前数据表明促血管生成因子具有免疫抑制作用,为ICI和抗血管生成药物联合使用提供了合理的解释。并且有研究认为,抗血管生成治疗与肿瘤免疫治疗相联合可能是一种相互增益的治疗策略。  相似文献   

5.
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.  相似文献   

6.
MicroRNAs have been increasingly implicated in human cancer and interest has grown about the potential to use microRNAs to combat cancer. Lung cancer is the most prevalent form of cancer worldwide and lacks effective therapies. Here we have used both in vitro and in vivo approaches to show that the let-7 microRNA directly represses cancer growth in the lung. We find that let-7 inhibits the growth of multiple human lung cancer cell lines in culture, as well as the growth of lung cancer cell xenografts in immunodeficient mice. Using an established orthotopic mouse lung cancer model, we show that intranasal let-7 administration reduces tumor formation in vivo in the lungs of animals expressing a G12D activating mutation for the K-ras oncogene. These findings provide direct evidence that let-7 acts as a tumor suppressor gene in the lung and indicate that this miRNA may be useful as a novel therapeutic agent in lung cancer.  相似文献   

7.

Background

Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.

Principal Findings

Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3+T, CCR7+T, IFNγ+T lymphocytes, DEC205+ DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.

Significance

This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an “off the shelf” approach to deliver antitumor cytokines to treat a broad range of malignancies.  相似文献   

8.
The results presented here further characterize four murine monoclonal antibodies (mAb) that recognize melanoma-specific antigens (9B6, T97, 2-3-1 and 2-3-3). These melanoma-specific mAbs are of the IgG2b isotype and are significantly therapeutic when administered systemically against established pulmonary melanoma metastases. Here we show a consistent and significantly inhibition of the growth of melanoma lung metastases by all four mAbs and the existence of a time ‘window’ at days 5–8 after tumor inoculation for optimal therapy. Since these mAbs were found not to be cytotoxic or cytolytic in vitro, we looked for host immune response regulation as being responsible for the therapeutic effects. Natural killer (NK) cells were implication as one arm of the host immune system involved in this response since depletion of NK cells in vivo by αasialoGM1 or αNK1.1 antibodies partially abrogated the inhibitory effect of the mAbs. The observed antimetastatic effects could also be partially abrogated using antibodies directed against the T-cell subset surface markers, CD4+ and CD8+. Intramuscular melanoma tumor growth was also found to be suppressed by mAb 2-3-1, but only if administered in the area of tumor growth and only if multiple inoculations are administered over a 13-day period. The beneficial effect of mAb antimetastatic therapy was found to be useful against several syngeneic melanomas, including JB/MS, B16 and several sublines of the B16 F10 melanoma.  相似文献   

9.
10.
BACKGROUND: Recurrent and metastatic carcinoma of the colorectum remains a major problem, with survival at 5 years post curative resection still only about 50%. Moreover, up to 30% of patients who present with early stage disease also relapse and die within 5 years, suggesting the presence of micrometastatic disease at diagnosis. One route of metastatic spread is via the blood stream, hence the detection of tumor cells in blood is likely to provide an important predictive tool with respect to relapse of disease. We have developed a sensitive molecular technique to identify tumor cells in blood using mutations in codon 12 of the K-ras gene as a marker. MATERIALS AND METHODS: Twenty-seven patients whose tumor carried a mutation in codon 12 of K-ras were studied for the presence of tumor cells in perioperative peripheral blood samples. Immunomagnetic beads, labeled with an epithelial-specific antibody, were used to harvest epithelial cells from blood. K-ras mutations were identified in this selected population using a polymerase chain reaction (PCR)-based analysis (immunobead-PCR). RESULTS: Circulating K-ras mutant cells were detected in 9 or 27 patients; seven of these nine patients have since died due to recurrent or metastatic disease. Mutant cells were not detected in 18 patients, and 16 or 18 have remained disease free (median follow-up: 16 months; range: 7-42 months). Kaplan-Meier analysis showed that detection of K-ras mutant cells in bloods was associated with significantly reduced disease-free survival (p = 0.0001). CONCLUSION: This study indicates that detection of circulating tumor cells perioperatively by immunobead-PCR provides a sensitive prognostic marker for recurrent and metastatic colorectal cancer.  相似文献   

11.
Identification of to what extent tumor burden influences muscle mass independently of specific treatments for cancer-cachexia remains to be elucidated. We hypothesized that reduced tumor burden by selective treatment of tumor with immunomodulators may exert beneficial effects on muscle wasting and function in mice. Body and muscle weight, grip strength, physical activity, muscle morphometry, apoptotic nuclei, troponin-I systemic levels, interleukin-6, proteolytic markers, and tyrosine release, and apoptosis markers were determined in diaphragm and gastrocnemius muscles of lung cancer (LP07 adenocarcinoma cells) mice (BALB/c) treated with monoclonal antibodies (mAbs), against immune check-points and pathways (CD-137, cytotoxic T-lymphocyte associated protein-4, programed cell death-1, and CD-19; N = 10/group). Nontreated lung cancer cachectic mice were the controls. T and B cell numbers and macrophages were counted in tumors of both mouse groups. Compared to nontreated cachectic mice, in the mAbs-treated animals, T cells increased, no differences in B cells or macrophages, the variables final body weight, body weight and grip strength gains significantly improved. In diaphragm and gastrocnemius of mAbs-treated cachectic mice, number of apoptotic nuclei, tyrosine release, proteolysis, and apoptosis markers significantly decreased compared to nontreated cachectic mice. Systemic levels of troponin-I significantly decreased in treated cachectic mice compared to nontreated animals. We conclude that reduced tumor burden as a result of selective treatment of the lung cancer cells with immunomodulators elicits per se beneficial effects on muscle mass loss through attenuation of several biological mechanisms that lead to increased protein breakdown and apoptosis, which translated into significant improvements in limb muscle strength but not in physical activity parameters.  相似文献   

12.
Tumor growth requires angiogenesis, which in turn requires an imbalance in the presence of angiogenic and angiostatic factors. We have shown that the CXC chemokine family, consisting of members that are either angiogenic or angiostatic, is a major determinant of tumor-derived angiogenesis in non-small-cell lung cancer (NSCLC). Intratumor injection of interferon-inducible protein 10 (IP-10, or CXCL10), an angiostatic CXC chemokine, led to reduced tumor growth in a SCID mouse model of NSCLC. In this study, we hypothesized that treatment with CXCL10 would, by restoring the angiostatic balance, improve long-term survival in NSCLC-bearing SCID mice. To test this hypothesis, A549 NSCLC cells were injected in the subcutis of the flank, followed by intratumor injections with CXCL10 continuously (group I), or for ten weeks (group II), or a control group (human serum albumin). Median survival was 169, 130, and 86 days respectively (P<0.0001). We extended these studies to examine the mechanism of prolonged survival in CXCL10-treated mice. CXCL10 treatment inhibited lung metastases, but was dependent upon continued treatment, and was associated with an increased rate of apoptosis in the primary tumor, with no direct effect on the proliferation of the NSCLC cells. Furthermore, the inhibition of lung metastases was due to the angiostatic effect of CXCL10 on the primary tumor, since the rate of apoptosis within lung metastases was unaffected. These data suggest that anti-angiogenic therapy of human lung cancer should be continued indefinitely to realize persistent benefit, and confirms the anti-metastatic capacity of localized angiostatic therapy.  相似文献   

13.
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.  相似文献   

14.
Activated point mutations of the K-ras gene are one of the most common genetic alterations found in human malignancies, including lung cancer, and are largely limited to adenocarcinomas. Using a highly sensitive assay for codon 12 K-ras mutation detection, called enriched PCR, we investigated 130 radically resected stage I-IIIa non-small cell lung cancer (NSCLC). There were statistically less positive results for squamous cell carcinoma (1.3%) than for adenocarcinoma (42.4%) and large cell carcinoma (27.8%). No statistically significant association between results of K-ras mutations and TNM stage of disease was found. In stage I of adenocarcinoma patients the incidence of K-ras mutations was similar to that in stage II or IIIa (40%, 42.9% and 42.9%, respectively). The results of our study showed that K-ras mutations might play an important role in pathogenesis of pulmonary adenocarcinoma due to its high prevalence in the operable tumours.  相似文献   

15.
Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies.  相似文献   

16.
Tumor growth and metastasis depend on vessel formation, and inhibition of angiogenesis of tumor by production of anti-angiogenic drugs should be a promising approach for cancer therapy. Tumstatin is an angiogenesis inhibitor. The anti-angiogenic activity of tumstatin is localized to the 54–132 amino acids. The gene fragment encoding amino acids 45–132 of tumstatin (tum-5) was subcloned into pcDNA3.1 (pcDNA-tum5). Tum-5 protein could be expressed and secreted in CHO cells after transfection. The conditioned medium (containing tum-5 protein) from the transfectant has an anti-angiogenic effect on HUVEC cells in vitro. The anti-tumor effect of pcDNA-tum5 on mice bearing S180 tumors was evaluated. The results showed that pcDNA-tum-5 has a significant inhibition activity in the growth of the tumors. This study suggests that the gene delivery of tum-5 may be an effective strategy for cancer therapy.  相似文献   

17.
18.
Reducing the blood supply of tumors is one modality to combat cancer. Monoclonal antibodies are now established as a key therapeutic approach for a range of diseases. Owing to the ability of antibodies to selectively target endothelial cells within the tumor vasculature, vascular targeting programs have become a mainstay in oncology drug development. However, the antitumor activity of single agent administration of conventional anti-angiogenic compounds is limited and the improvements in patient survival are most prominent in combinations with chemotherapy. Furthermore, prolonged treatment with conventional anti-angiogenic drugs is associated with toxicity and drug resistance. These circumstances provide a strong rationale for novel approaches to enhance the efficacy of mAbs targeting tumor vasculature such as antibody-drug conjugates (ADCs). Here, we review trends in the development of ADCs targeting tumor vasculature with the aim of informing future research and development of this class of therapeutics.Key words: tumor, vasculature, immunotherapy, antibody-drug conjugates, monoclonal antibody, cancer, angiogenesis  相似文献   

19.
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.  相似文献   

20.

Background

Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined.

Methodology/Principal Findings

We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K.

Conclusions/Significance

We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号