首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

2.
3.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

4.
5.
6.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

7.
8.
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.Astrocyte reactivity (reactive gliosis) is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remains poorly understood. In the healthy central nervous system (CNS), astrocytes coordinate homeostatic vascular perfusion, free radical detoxification and neurotransmitter recycling.1, 2 Injury or stress induces a phenotypic switch, whose cardinal features are cellular hypertrophy and increased expression and polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein (GFAP).3, 4, 5 The role of intermediate filaments in reactive gliosis remains unclear.3, 6, 7, 8, 9 Genetic deletion of IFs GFAP and vimentin have been shown to promote axonal outgrowth and regeneration in developing neurons and models of CNS injury,10, 11, 12 yet result in developmental defects to inner retinal function13 and increased damage in models of Alzheimer''s disease.14 Genetically, GFAP gain of function mutations associated with Alexander''s disease induce a p38 mitogen-activated protein kinase (MAPK)-dependent pathology.15 However, no pharmacologic tools have been available to specifically modulate and explore this reactive switch in the context of pathological CNS injury. Consequently, strategies to therapeutically target the reactive switch have remain challenging to explore.Withaferin A (WFA) is a small molecule withanolide that is a potent and specific inhibitor of type III intermediate filament dynamics.16, 17, 18 Its activity has been most closely studied with respect to vimentin rearrangement and phosphorylation in the context of angiogenesis, fibrosis and cancer, through downstream effects on inflammatory signaling and cell proliferation.19, 20, 21, 22, 23, 24 Interestingly, WFA has been reported to regulate vimentin-mediated activation of MAPKs in a context dependent manner, as well as NFκB.25, 26 Recently Bargagna-Mohan et al.27 reported that, in addition to vimentin, WFA also binds covalently to GFAP at cysteine 294. In these studies WFA impaired GFAP filament assembly and polymerization in cultured astrocytes, and in vivo in retinal astrocytes and related Müller glia in a model of injury-induced gliosis.27 Therefore, WFA presents a novel tool to test the pharmacologic blockade of intermediate filament remodeling during gliosis. However, the consequences of WFA disruption of IFs on neuronal damage has not been studied.We have previously used the retina as a uniquely accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal survival.28, 29, 30 In the human and rodent eye retinal ganglion cells (RGCs) and amacrine cells of the inner retina maintain a delicate homeostatic balance and are particularly vulnerable to excitotoxic and metabolic damage, mediated in part through non-cell autonomous interactions with neighboring glia.31, 32, 33, 34 In addition, our work and others has implicated signaling through p38 MAPKs as key regulators of glutamate recycling, antioxidant activity, and cytokine secretion in neighboring stress-activated retinal astrocytes and Müller glia.29, 35, 36, 37 Here we take advantage of a model of induced retinal astrocyte reactivity to establish whether WFA, and the selective p38 MAPK inhibitor SB203580 (SB), affect neuronal apoptosis in a mouse model of excitotoxic injury.  相似文献   

9.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

10.
Despite high remission rates after chemotherapy, only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.Only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis.1 This extremely poor prognosis is mainly caused by treatment failure due to chemotherapy resistance. This resistance is often a multifactorial phenomenon that can include enhanced expression or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R).2, 3 The IGF-1R stimulates proliferation, protects cells from apoptosis and has been implicated in the development and maintenance of various cancers.4, 5 Several oncogenes require an intact IGF-1R pathway for their transforming activity6 and moreover, disruption or inhibition of IGF-1R activity has been shown to inhibit the growth and motility of a wide range of cancer cells in vitro and in mouse models.4, 5 IGF-1Rs are membrane receptors and binding of their ligand, the insulin-like growth factor-1 (IGF-1), results in receptor phosphorylation and activation of MAPK and PI3K/Akt signaling.4 Importantly, IGF-1, normally produced by the liver and bone marrow stromal cells, can stimulate the proliferation of cancer cells in vitro and genetic manipulations that reduce IGF-1 signaling can lead to decreased tumor growth.7, 8In hematological malignancies, a role for IGF-1 signaling has been demonstrated in multiple myeloma (MM) where it stimulates growth and potently mediates survival.9 Several anti-IGF-1R strategies have been shown to inhibit MM growth.10, 11 In AML, expression of the IGF-1R and IGF-1 was detected in AML cell lines and primary AML blasts and stimulation with IGF-1 can promote the growth of AML cells.12, 13, 14 In addition, neutralizing IGF-1R antibodies and the tyrosine kinase inhibitors (TKIs) NVP-AEW541 and NVP-ADW742, have been shown to inhibit proliferation and to induce apoptosis.15, 16In addition to its mitogenic and anti-apoptotic roles, directly influencing tumor development, IGF-1R appears to be a critical determinant of response to numerous anti-cancer therapies, including TKIs and chemotherapy.2, 3, 17, 18, 19, 20, 21, 22 In AML, activated IGF-1R signaling has been linked to cytarabine resistance, a drug included in every AML treatment schedule.17 Notably, in several cancer cell lines, a small subpopulation of drug-tolerant cancer cells exists that maintains their viability, after treatment with a lethal drug dose, via engagement of the IGF-1R.18The activity of the IGF-1R is tightly controlled at multiple levels, including their processing, endocytosis, trafficking and availability of its ligands.4 Ligand bioavailability is partly controlled by the family of secreted insulin-like growth factor-binding protein (IGFBP1 to IGFBP6), which can bind to IGFs therewith regulating the interaction of these ligands to their receptors. However, as IGFBPs are able to induce IGF-dependent and IGF-independent effects, the results of several studies on their role in cancer cell survival appeared to be controversial and complex.23, 24 In addition to IGFBPs, various IGFBP-related proteins have been identified.23, 25 One of these is the IGFB-related protein 1, also known as insulin-like growth factor-binding protein-7 (IGFBP7). IGFBP7 has 30% homology to IGFBP1 to IGFBP6 in its N-terminal domain and functions predominantly as a tumor suppressor.23, 24, 25, 26 In contrast to IGFBP1 to IGFBP6, which bind to the IGFs,23 IGFBP7 is a secreted protein that can directly bind to the IGF-1R and thereby inhibits its activity.27 The abundance of IGFBP7 is inversely correlated with tumor progression in hepatocellular carcinoma.28 Importantly, decreased expression of IGFBP7 has been associated with therapy resistance29, 30 and increasing IGFBP7 levels can inhibit melanoma and breast cancer growth.31, 32 IGFBP7 was originally identified as being involved in Raf-mediated apoptosis and senescence33 and also has been shown to induce senescence in mesenchymal stromal cells.34We established that IGFBP7 induces a cell cycle block and apoptosis in AML cells and cooperates with chemotherapy in the induction of leukemia cell death. AML patients with low IGFBP7 expression have a worse outcome than patients with high IGFBP7 expression, indicating that AML patients might benefit from a combination therapy consisting of chemotherapy and IGFBP7. Our results define IGFBP7 as a focus to enhance chemotherapy efficacy and improve AML patient survival.  相似文献   

11.
12.
Spinal cord injury (SCI) is a devastating condition of CNS that often results in severe functional impairments for which there are no restorative therapies. As in other CNS injuries, in addition to the effects that are related to the primary site of damage, these impairments are caused by degeneration of distal regions that are connected functionally to the primary lesion site. Modulation of the endocannabinoid system (ECS) counteracts this neurodegeneration, and pharmacological modulation of type-2 cannabinoid receptor (CB2R) is a promising therapeutic target for several CNS pathologies, including SCI. This study examined the effects of CB2R modulation on the fate of axotomized rubrospinal neurons (RSNs) and functional recovery in a model of spinal cord dorsal hemisection (SCH) at the cervical level in rats. SCH induced CB2R expression, severe atrophy, and cell death in contralateral RSNs. Furthermore, SCH affected molecular changes in the apoptotic cascade in RSNs – increased cytochrome c release, apoptosome formation, and caspase-3 activity. CB2R stimulation by its selective agonist JWH-015 significantly increased the bcl-2/bax ratio, reduced cytochrome c release, delayed atrophy and degeneration, and improved spontaneous functional recovery through ERK1/2 inactivation. These findings implicate the ECS, particularly CB2R, as part of the endogenous neuroprotective response that is triggered after SCI. Thus, CB2R modulation might represent a promising therapeutic target that lacks psychotropic effects and can be used to exploit ECS-based approaches to counteract neuronal degeneration.Spinal cord injury (SCI) is a devastating neurological disease that results in severe functional impairments for which there are no restorative therapies. In addition to the primary injury, functional impairments following SCI are attributed to degenerative events in regions that are remote but functionally connected to the primary lesion site – that is, supraspinal structures. These events include cell death and structural changes and are important predictors of outcome.1, 2 However, few studies have examined the molecular and biochemical changes in remote neurons after SCIs as targets for therapeutic interventions.The spinal cord hemisection (SCH) model is a sensitive and reliable paradigm that has been used to evaluate forelimb motor functions and changes in remote supraspinal areas that are functionally related to the primary site of injury.3 When performed at the cervical level, an SCH in rodents axotomizes nearly the entire contralateral neuronal population of the magnocellular component of the red nucleus and mimics Brown–Séquard syndrome in humans.3, 4The endocannabinoid system (ECS) is a ubiquitous lipid signaling system that has homeostatic functions and comprises two types of G protein-coupled receptors, CB1R and CB2R, their endogenous ligands (arachidonoyl ethanolamide or anandamide and 2-arachidonoylglycerol), and the enzymatic machinery responsible for their synthesis and degradation.5 In the brain, the ECS acts like a neurotransmitter system that governs neuronal excitability at various synapses, regulating such processes as pain, mood, appetite, memory, and motor activity.6, 7 Unlike classical neurotransmitters, endocannabinoids are not stored in vesicles but are produced on demand in response to various stimuli.6, 7The ECS is modulated by many neurological insults, such as cerebral ischemia,8 traumatic,9 and focal brain injury,10 and it is increasingly considered a promising therapeutic target in several CNS pathologies9, 10, 11, 12, 13 including SCI.14, 15, 16, 17After an incomplete SCI by concussion, the rapid postlesional activation of cannabinoid receptors that occurs is considered an endogenous protective mechanism.14 Simultaneous stimulation of CB1R and CB2R early before injury impedes expansion of the lesion and white matter at the epicenter of damage – effects that are maintained for up to 28 days after injury.15 This limited damage is also accompanied by greater recovery of locomotor function.16 These neuroprotective effects are prevented by simultaneous blockade of CB1R and CB2R but not of either receptor alone. In the same SCI model, Adhikary et al.17 demonstrated that a selective CB2R agonist significantly modulated immune responses at the lesion site and improved motor and autonomic functions. The potential of endocannabinoids to limit damage at the primary site has also been highlighted in many studies.8, 9, 14, 15, 16, 17 Recent reports have implicated the ECS in remote damage,10 but the function of the ECS in supraspinal structures after SCI has not been examined.In this study, we determined the effects of CB2R modulation on the fate of the axotomized rubrospinal neurons (RSNs) and on spontaneous functional recovery after SCH at the cervical level in rats. Beginning 7 days after damage, SCH induced severe atrophy and cell loss and upregulated CB2R in axotomized RSNs. Notably, neuronal degeneration proceeded concomitantly with molecular changes in the apoptotic cascade – that is, greater cytochrome c (cyt-c) release from damaged mitochondria, cyt-c/Apaf-1 binding, and caspase-3 activity. CB2R stimulation by its selective agonist JWH-015 (JWH) significantly increased the bcl-2/bax ratio, reduced cyt-c release, delayed atrophy and degeneration, and improved spontaneous functional recovery through ERK1/2 inactivation. Thus, CB2R modulation is a therapeutic target that might counteract the remote degeneration of supraspinal regions after SCI.  相似文献   

13.
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of intrinsic and extrinsic cellular events resulting in regenerative failure and subsequent damage to neurons.1, 2, 3, 4, 5 The intrinsic factors include deregulation in growth-promoting factors, apoptotic factors, intracellular signaling molecules and trophic factors.6 Similarly, the extrinsic factors correlate to growth inhibition due to inhibitory cues3, 7, 8, 9, 10, 11, 12, 13 that include myelin and myelin associated inhibitors, glial scarring,5, 14 slow clearance of axonal debris,7 incorrect development of neuronal projections6 and CNS inflammation.15, 16 Progressive degeneration of mature retinal ganglion cells (RGCs) has been associated with loss of trophic support,8, 9 detrimental inflammatory processes/immune regulation10, 11 and apoptotic effectors.9, 12, 13, 15, 17After injury, mammalian RGC axons show only a short-lived sprouting response but no long-distance regeneration through the optic nerve (ON).16 Glial responses around the affected area are initiated by injured CNS axons.18 Axons undergoing Wallerian degeneration are surrounded by astrocytes that upregulate glial fibrillary acidic protein (Gfap) expression and these reactive astrocytes contribute to trauma-induced neurodegeneration.19 Glial scarring inhibits axonal transport after ON crush (ONC)5, 14 decreasing transport of proteins involved in neuroprotection and synaptic plasticity. Regenerative failure is a critical endpoint of these destructive triggers culminating in neuronal apoptosis3, 20, 21 and inhibition of functional recovery. Intrinsic factors affecting axonal regeneration after CNS injury are crucial for recovery and thus, dysregulation of genes involved in axonal plasticity and outgrowth can prove detrimental to the neuronal recovery.22, 23, 24Current neuroprotection approaches include promoting survival of RGCs by intraocular injections of recombinant factors like ciliary neurotrophic factor (CNTF) and peripheral nerve (PN) transplantations in vitro25 and in vivo after injury.26 Studies performed with glial cell-line-derived neurotrophic factor and neurturin protect RGCs from axotomy-induced apoptosis.27 Further, in the ON injury model, RGC survival was promoted after deletion of CCAAT/enhancer binding protein homologous protein28 and enhanced regeneration observed with co-deletion of kruppel-like factor 4 (Klf4) and suppressor of cytokine signaling 3 (Socs3).29 Intraocular administration of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) after ON transection has also exerted neuroprotective effects on axotomized RGCs. In addition, PNs transplanted adjacent to ONs, ex vivo PN grafts with lenti-viral transduced Schwann cells, and stimulation of inflammatory processes have strong pro-regenerative effects on injured RGCs.26, 30, 31, 32, 33In addition, using adeno-associated-virus (AAV) therapy, AAV mediated expression of CNTF in bcl2 overexpressing transgenic mice increases cell viability and axonal regeneration,34 whereas BDNF promotes survival of RGCs.35 Likewise, experiments with AAV–BDNF, –CNTF and –growth-associated protein 43 (GAP43) have shown that AAV–CNTF was the most crucial for promoting both long-term survival and regeneration.36 The positive effects of CNTF are observed mainly through simultaneous deletion of both PTEN and SOCS337 and the concurrent activation of mTOR and STAT3 pathways.38 Although CNTF shows robust increase and sustained axon regeneration in injured ONs of rodents, it causes axonal misguidance and aberrant growth.39 Furthermore, it has been shown that CNTF acts as a chemoattractant. CNTF administration onto autologous PN grafts transplanted within transected ON increased regeneration, but these effects were significantly reduced after removal of macrophages from this site.40 In addition, the effects of CNTF using PN grafts at ON transection sites are further subject to debate, as previously it has been shown that Ad-CNTF injections preserved RGC axons but did not induce regeneration of axotomized RGCs.41 Thus, other studies have addressed RGC survivability and axonal regeneration with CNTF and other growth factors,35, 36 but most trophic factors affect neuronal survival and regeneration differentially.Previous studies targeting neuronal apoptosis by overexpressing intrinsic growth factors, inhibiting apoptosis and enhancing regeneration in CNS trauma models have established that a multifactorial approach is required for successful and long-lasting therapeutic outcomes.6, 36 Current gaps still exist for a key gene that could effectively target neuroprotection, enhance neuron regeneration and sustain neuronal function.One key gene implicated in neuronal plasticity is Neuritin 1 (Nrn1), also known as candidate plasticity gene 15. It has multiple functions and was first identified and characterized when screening for candidate plasticity genes in the rat hippocampal dentate gyrus activated by kainate.42, 43, 44 Nrn1 is highly conserved across species45 and translates to an extracellular, glycophosphatidylinositol-linked protein (GPI-linked protein), which can be secreted as a soluble form. Nrn1 stimulates axonal plasticity, dendritic arborization and synapse maturation in the CNS.46 During early embryonic development, Nrn1 promotes the survival of neural progenitors and differentiated neurons,47 while later in development it promotes axonal and dendritic growth and stabilization, allowing maturation and formation of synapses.43, 46, 48 In the adult brain, Nrn1 has been correlated with activity-dependent functional plasticity45, 49 and is expressed in post mitotic neurons.Nrn1 may be a crucial gene for neuroprotection and regeneration because growth factors such as nerve growth factor (NGF), BDNF and NT-3 as well as neuronal activity can potentiate the expression of Nrn1.44, 50 In addition, we reported that Nrn1 mRNA expression appears to be biphasic after ON axonal trauma, indicating a transient attempt by RGCs at neuroprotection/neuroregeneration in response to ONC injury.51 The dynamic regulation of Nrn1 coupled with neurotrophic effects may promote axonal regeneration in the CNS. To overcome CNS trauma, a new therapy geared towards neuroprotection and effective axonal regeneration is required to enhance a future multifactorial approach. The purpose of this study is to evaluate the therapeutic effects of Nrn1 in mouse RGC cultures as well as in the mouse ONC model. We have identified a distinct neuroprotective and regenerative strategy that prevents neurodegeneration after ON injury. AAV2–hNRN1 expression vectors partially rescued RGCs from apoptosis, maintained RGC function, and initiated regeneration of injured axons.  相似文献   

14.
15.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

16.
Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes.Tumor necrosis factor (TNF) is a pleiotropic cytokine that occurs as a type II transmembrane protein but can be released from the plasma membrane by proteolytic processing.1 Membrane-bound and soluble TNF both contain the characteristic carboxy-terminal TNF homology domain, which is responsible for self-assembly into trimeric molecules and receptor binding. Membrane-bound and soluble TNF strongly interact with two receptors, TNFR1 and TNFR2, but the two forms of TNF are differentially effective in receptor activation.1 Whereas membrane-bound TNF activates TNFR1 and TNFR2 efficiently, soluble TNF is sufficient for TNFR1 activation but largely inactive upon binding to TNFR2. TNFR1 belongs to the death receptor subgroup of the TNF receptor family and can trigger apoptosis and necroptosis.2, 3, 4 However, cell death induction by TNFR1 is typically efficiently antagonized by concomitant activation of the cytoprotective classical NFκB pathway and/or ubiquitous expression of anti-apoptotic proteins.1, 2 The latter involve FLIP proteins which generally inhibit death receptor-induced caspase-8 activation but also complexes containing TRAF2, cIAP1 and cIAP2 which specifically interfere with caspase-8 activation in context of TNFR1 signaling.2, 3, 4 Worth mentioning, TRAF2-cIAP1/2 complexes also mediate K63-linked ubiquitination of RIP1 in the TNFR1 signaling complex, thereby facilitating TNFR1-mediated activation of the classical NFκB pathway. Indeed, TNFR1 signaling is predominantly pro-inflammatory as TNFR1-induced cell death is blocked as long as the aforementioned protective mechanisms are not impaired.In contrast to TNFR1, TNFR2 contains no cytoplasmic death domain. Upon ligand binding, TNFR2 recruits TRAF2 and various TRAF2-associated proteins, such as TRAF1, cIAP1 and cIAP2, but also interacts with other signaling proteins independently of TRAF2.1, 5 TNFR2 activation has been linked to a variety of immune regulatory functions, which, in contrast to the activities of TNFR1, often result in anti-inflammatory effects.6Murine models shed light on the complex interplay of the TNFR1–TNFR2 system in vivo, demonstrating additive, synergistic or even antagonistic effects. At the cellular level, several mechanisms for the cross-talk between TNFR1 and TNFR2 have been identified.1 Besides the obvious competition for ligand binding, TNFR1 and TNFR2 can induce, for example, autocrine TNF production in a cell type-specific manner.1 In context of TNFR1 activation by soluble TNF, subsequent induction of membrane-bound TNF results in costimulation of TNFR2, thereby converting the initially transient activation into sustained autocrine signaling. In addition, TNFR1 and TNFR2 compete for the cytoplasmic pool of TRAF2–cIAP1/2 complexes. By depletion and/or degradation of TRAF2, TNFR2 is capable to modulate TNFR1 signaling.1 Moreover, TNFR2 but not TNFR1, stimulates the alternative NFκB pathway by triggering proteolytic processing of the inactive p100/RelB dimers into active p52/RelB NFκB complexes.7 Notably, TNFR2-induced alternative NFκB signaling can be enhanced by TNFR1-mediated induction of p100 and RelB expression via the classical NFκB pathway.7In macrophages, the complexity of the TNF-TNFR1/2 system is especially relevant. Macrophages on one hand co-express TNFR1 and TNFR2 and are on the other hand a pathophysiologically important source of TNF, for example, in response to a variety of pathogen-associated molecular patterns (PAMPs). TNF not only acts as a macrophage-derived effector molecule, but in an autocrine fashion also controls macrophage activation and survival, as seen for example during infection with mycobacteria.8, 9, 10, 11, 12, 13, 14, 15, 16, 17 However, the molecular mechanisms of TNF-induced cell death in macrophages are incompletely understood and were, therefore addressed in our study. Using macrophages genetically deficient for TNFR1, TNFR2 or TNF together with TNFR1- and TNFR2-specific TNF variants, we show that TNFR2 activation sensitizes macrophages for TNFR1-mediated necroptosis triggered by autocrine produced TNF and provide evidence that this is related to TNFR2-induced depletion/degradation of TRAF2-cIAP1/2 complexes.  相似文献   

17.
Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.The sphingomyelin pathway is initiated by the hydrolysis of sphingomyelin to generate the second messenger ceramide.1 Sphingomyelin hydrolysis is a major pathway for stress-induced ceramide generation. Neutral sphingomyelinase (nSMase) is activated by a variety of environmental stress conditions, such as heat shock,1, 2, 3 oxidative stress (hydrogen peroxide (H2O2), oxidized lipoproteins),1 ultraviolet (UV) radiation,1 chemotherapeutic agents,4 and β-amyloid peptides.5, 6 Cytokines, including tumor necrosis factor (TNF)-α,7, 8, 9 interleukin (IL)-1β,10 Fas ligand,11 and their associated proteins, also trigger the activation of nSMase.12 Membrane-bound Mg2+-dependent nSMase is considered to be a strong candidate for mediating the effects of stress and inflammatory cytokines on ceramide.3Among the four vertebrate nSMases, nSMase1 (SMPD2) was the first to be cloned and is localized in the endoplasmic reticulum (ER) and Golgi apparatus.13 Several studies have focused on the potential signaling roles of nSMase1, and some reports have suggested that nSMase1 is important for ceramide generation in response to stress.5, 6, 14, 15 In addition, nSMase1 is responsible for heat-induced apoptosis in zebrafish embryonic cultured (ZE) cells, and a loss-of-function study showed a reduction in ceramide generation, caspase-3 activation, and apoptosis in zebrafish embryos.16 However, nSMase1-knockout mice showed no lipid storage diseases or abnormalities in sphingomyelin metabolism.17 Therefore, the molecular mechanisms by which nSMase1 is activated have yet to be elucidated.Environmental stress and inflammatory cytokines1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 stimulate stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) signaling, which involves the sequential activation of members of the mitogen-activated protein kinase (MAPK) family, including MAPK/ERK kinase kinase (MEKK)1/MAPK kinase (MKK)4, and/or SAPK/ERK kinase (SEK)1/MKK7, JNK, and c-jun. Both the JNK and sphingomyelin signaling pathways coordinately mediate the induction of apoptosis.1 However, possible crosstalk between the JNK and sphingomyelin signaling pathways has not yet been characterized. Previously, we used SDS-PAGE to determine that nSMase1 polypeptides migrated at higher molecular masses,16 suggesting that the sphingomyelin signaling pathway might cause the production of a chemically modified phosphorylated nSMase1, which is stimulated under stressed conditions in ZE cells.16 Here, we demonstrate that JNK signaling results in the phosphorylation of Ser-270 of nSMase1, which initiates ceramide generation and apoptosis. We also provide evidence for a signaling mechanism that integrates cytokine- and stress-activated apoptosis in vertebrate cells. We studied stress-induced ceramide generation in two cell types: ZE cells and human leukemia Jurkat T-lymphoid cells. Stress-induced apoptosis has been investigated in these systems previously.16, 28  相似文献   

18.
19.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

20.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号