首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
海洋微塑料污染的生态效应研究进展   总被引:9,自引:0,他引:9  
刘强  徐旭丹  黄伟  徐晓群  寿鹿  曾江宁 《生态学报》2017,37(22):7397-7409
海洋微塑料污染已成为全球性环境问题。微塑料粒径小,易与海洋生物发生相互作用,可通过多种途径进入海洋生物体内,并在其组织和器官中蓄积和转移,对机体产生毒害。微塑料可沿食物链进行传递,威胁海洋生态系统的健康与稳定。因此,海洋生物与微塑料的相互作用以及海洋微塑料污染的生态效应成为当前研究的热点。综述微塑料的生物附着、生物摄入、对海洋生物的毒性效应及其与化学污染物的复合毒性效应研究的基础上,提出未来微塑料生态效应研究应重点关注我国海洋环境中微塑料的污染现状及生物摄入状况、微塑料的生物效应及其毒理学机制研究、微塑料与其他污染物的复合效应、以及微塑料在海洋生态系统中的作用及其生物地球化学行为等。  相似文献   

2.
微型浮游生物生态学研究概述   总被引:12,自引:2,他引:12  
孙书存  陆健健 《生态学报》2001,21(2):302-308
最近一二十年来,原绿藻和微食物网的重大发现已使人们充分认识到微型浮游生物在水域生态系统的养分循环和能量流动中的重要意义,也为微型浮游生物的研究提出了新的方向。对微型浮游生物的主要类群,即微型浮游植物、异养细菌和微型浮游动物的生态学研究进展作了概述,在此基础上讨论了类群间的生态关系和微食物网的研究动向。最后对微型游生物生态学的继续研究提出了几点看法。  相似文献   

3.
近年来,微塑料引起的环境污染已经成为一个全球性的问题,在海洋环境中,微生物可以附着于微塑料表面形成生物被膜。已有研究表明生物被膜可以为生活在其内部的细菌提供保护,被膜中可能富集了对人体或者水生生物有害的致病菌,且频繁的基因交流可能产生更多耐药菌。微塑料表面附着的微生物,能借助大洋环流随微塑料在海洋中迁徙,进而可能引起微生物入侵事件的发生。主要对微塑料与生物被膜之间的相互作用、微塑料与附着在其表面的塑料降解菌、微塑料与致病菌、微塑料对微生物迁徙的影响,以及微塑料表面生物被膜中耐药基因的扩散进行综述,对微塑料附着微生物未来研究方向进行了展望,为更好地了解海洋微塑料污染提供参考。  相似文献   

4.
陈满英  喻乔  张太平 《生态科学》2021,40(4):202-211
作为一种新兴的污染物,微塑料在水和土壤生态系统中普遍存在,并成为了近年来环境污染研究的热点之一.目前研究主要集中在海洋和淡水生态系统中微塑料的检测、赋存、表征和毒理学等方面,但与水生态系统相比,对土壤生态系统中微塑料的生态效应的了解还很有限.为此,论文综述了土壤环境中微塑料的来源、丰度及分布特征、微塑料对土壤结构和生物...  相似文献   

5.
微塑料已经成为一种新型的污染物,关于微塑料本身所造成毒性效应的研究较少。本研究以稀有■鲫Gobiocypris rarus初孵仔鱼为受试对象,研究了不同粒径(0.1μm、1μm、10μm)、不同浓度(0.055μg·L-1、0.55μg·L-1、5.5μg·L-1、55μg·L-1、550μg·L-1)的聚苯乙烯(PS)微塑料对稀有■鲫仔鱼存活、生长的影响以及微塑料在仔鱼体内的累积和清除情况。暴露7 d后,各暴露组仔鱼的存活率和全长与空白对照组间的差异均无统计学意义(P>0.05);各暴露组仔鱼的鳃、消化道内均发现荧光微塑料,荧光强度随微塑料浓度增高而增强;经过7 d净化后,仔鱼体内PS微塑料均显著减少(P<0.05)。本研究表明,环境浓度水平的PS微塑料虽可在稀有■鲫体内积累,但清除速度也较快,在个体可观察水平上未见明显的毒性效应。  相似文献   

6.
微塑料污染(microplastics pollution)在全球范围内受到广泛关注。相比于海洋环境以及其他主要河流、湖泊的微塑料污染情况,黄河流域的相关数据较为贫乏。通过综述文献分析了黄河流域河道沉积物和表层水的微塑料污染丰度、类型以及空间分布特征,探讨了黄河流域重要城市和重点保护区的微塑料污染现状,并提出了相应的防控措施。结果表明:黄河流域沉积物和表层水中微塑料污染在空间分布上整体呈现自上游向下游增多的趋势,尤其在黄河三角洲湿地该趋势更加明显;黄河流域沉积物和表层水中微塑料类型存在明显差异,主要与微塑料的材质有关;与全国同类区域相比,黄河流域国家重点城市市域和国家湿地公园的微塑料污染水平处于中高程度,应引起重视;塑料通过多种暴露途径会对黄河滩区养殖业和人类健康造成严重影响。控制黄河流域水体微塑料污染,需要完善相关生产标准和法律法规,提高可降解微塑料产能和塑料废弃物的工程化降解能力。  相似文献   

7.
微塑料(MPs),尤其是纳米级可通过生物毒性效应影响蝌蚪健康,是继气候变化、紫外线辐射和致病菌外,导致两栖动物种群数量衰退的另一潜在致危因素。本文介绍了MPs的定义、赋存方式及其尺度效应,总结了MPs在蝌蚪体内的摄入、积累和清除情况,从形态表型、行为特征和组织病理学变化的角度概述了MPs对蝌蚪健康的危害。在水陆转换的生态学背景下和特定年龄阶段的生活史背景下,围绕免疫功能的可塑性和可供蝌蚪研究使用的免疫学参数,提出了未来值得关注的研究方向。  相似文献   

8.
[目的]研究海水养殖池塘中投放以芽孢杆菌和假单胞菌为主的一种自主研发的微生态制剂对池塘养殖生物、微生物菌相、浮游生物的影响,以期为建立微生物生态调控技术体系提供参考.[方法]实验期间,每隔15d于试验池塘中泼洒微生态制剂一次,每月末取样测量水体和底泥中异养菌和弧菌密度、浮游生物种类和密度,实验结束时测量养殖生物的生长率和成活率.[结果]该微生态制剂能够显著提高南美白对虾和三疣梭子蟹的存活率和生长速度,试验组南美白对虾的存活率和体重增长率较对照组分别提高了11.3%和1 400%,试验组三疣梭子蟹的存活率和体重增长率较对照组分别提高了1.2%和37.5%;微生态制剂能够显著提高海水池塘的异养菌总数,从而抑制致病性弧菌的数量,试验组池水和底泥的异养菌平均密度在整个养殖期较对照组提高了58.5%和51.3%,而试验组水体中致病菌——弧菌的数量在整个养殖期较对照组降低了39.7%;微生态制剂使绿藻门和硅藻门的藻类密度明显增加,对蓝藻和甲藻的生长有抑制作用.[结论]该微生态制剂能够有效地改善养殖池塘中生物群落结构,提高某些养殖品种的生长速度.  相似文献   

9.
10.
为了掌握卧龙湖浮游生物群落特征和环境影响因子, 分别于2016 年春、夏、秋、冬4 个季节进行了采样调查。共检测到卧龙湖浮游植物7 门57 种, 其中绿藻门种类最多, 为26 种, 硅藻门18 种, 蓝藻门8 种, 裸藻门2 种, 甲藻门、金藻门、隐藻门各1 种, 主要优势种有类颤藻鱼腥藻(Anabeana osicellariordes)、梅尼小环藻(Cyclotellameneghiniana)、颗粒直链藻(Melosira granulata)、尖针杆藻(Synedra acus)、螺旋形纤维藻(Ankistrodesmus spiralis)、四尾栅藻(Scenedesmus quadricauda)、四足十字藻(Crucigenia tetrapedia)。浮游植物种类组成随季节变化而演替, 密度变化范围是841.1×104-8907.3×104 cells·L-1。水温是浮游植物种类组成和密度变化的主要影响因子。共鉴定浮游动物4 个门类18 种, 分别是原生动物、轮虫类、枝角类和桡足类。其中轮虫类种类数最多, 共10 种, 原生动物和枝角类各3 种, 桡足类2 种。主要优势种有萼花臂尾轮虫(Brachionus calyciflorus)、螺形龟甲轮虫(Keratella cochlearis)、针簇多肢轮虫(Polyarthra trigla)、长三肢轮虫(Filinia longisela)、长额象鼻溞(Bosmina longirostris)。水温和浮游植物密度是浮游动物种类组成和密度变化的主要驱动因子。浮游植物密度及优势种、营养状态指数(TSI)都表明卧龙湖处于富营养状态。  相似文献   

11.
Comments on a recently described moorable, automated plankton sampler are given, mainly because it was designed to capture large zooplankton. However, the need for automatic devices for sampling phyto- and zooplankton is stressed. A new design for such a device is presented. A preliminary test was made using standard continuous-flow (auto-analyser) equipment, a cultured flagellate and formalin as a fixative.  相似文献   

12.
Although phosphorus fertilisation can improve productivity in most freshwater ponds, phosphate may become limiting in extremely hard water due to rapid precipitation with calcium. Hence we studied the characteristics of plankton and nutrient dynamics in water containing >400 mg CaCO3 l–1in pond and microcosm systems. The field experiment was conducted in eight earthen ponds involving two nutrient ratios (N:P = 1:1 and 20:1) with or without crayfish. Fertilisation significantly increased concentrations of NO2–N and NO3–N, but soluble reactive phosphorus was depleted to the level prior to fertilisation within 24 h. The laboratory test showed that after 6 h of fertilisation, 45% phosphorus was precipitated by calcium, 30% phosphorus was assimilated by phytoplankton and only 25% phosphorus remained in water column. The phytoplankton abundance in hardwater ponds was regulated by the abundance of zooplankton population rather than by either crayfish or fertilisation. The presence of crayfish only increased the concentration of total phosphorus. This study suggests that when phytoplankton production is required in crayfish ponds the maintenance of phytoplankton abundance will depend on the effective control of zooplankton rather than fertilisation. Due to the rapid precipitation of phosphorus by calcium in hard water ponds, more frequent phosphorus fertilisation is needed to enhance primary productivity.  相似文献   

13.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

14.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

15.
The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m–3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.  相似文献   

16.
Why plankton communities have no equilibrium: solutions to the paradox   总被引:8,自引:1,他引:8  
Scheffer  Marten  Rinaldi  Sergio  Huisman  Jef  Weissing  Franz J. 《Hydrobiologia》2003,491(1-3):9-18
In a classical paper, Hutchinson (1961) argued that the large number of species in most plankton communities is remarkable in view of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. Few ideas in aquatic ecology have evoked more research than this `paradox of the plankton'. This review is an effort to put the main solutions to the paradox that have been proposed over the years into perspective. Hutchinson himself already suggested that the explanation could be that plankton communities are not in equilibrium at all due to weather-driven fluctuations. Subsequent research confirmed that such externally imposed variability can allow many species to coexist. Another important point is that in practice the homogeneous well-mixed conditions assumed in the competitive exclusion principle hardly exist. Even the open ocean, for instance, has a spatial complexity resulting from meso-scale vortices and fronts that can facilitate coexistence of species. Perhaps most excitingly, theoretical work on species interactions has given a counter-intuitive new dimension to the understanding of diversity. Various competition and predation models suggest that even in homogeneous and constant environments plankton will never settle to equilibrium. Instead, interactions between multiple species may give rise to oscillations and chaos, with a continuous wax and wane of species within the community. Long-term laboratory experiments support this view. This chaotic behavior implies among other things that plankton dynamics are intrinsically unpredictable in the long run when viewed in detail. Nonetheless, on a higher aggregation level, indicators such as total algal biomass may show quite regular patterns.  相似文献   

17.
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids.  相似文献   

18.
SUMMARY 1. The POTAMON model [Everbecq E. et al . (2001) Water Research , 35 , 901] has been used to simulate the effect of benthic bivalves (mainly Dreissena polymorpha ) on the phytoplankton and zooplankton in a lowland Western European river (the Moselle). Here we use a modified version of the POTAMON model with five categories of phytoplankton ( Stephanodiscus , Cyclotella -like, large diatoms, Skeletonema and non-siliceous algae) to model filter-feeding effects of benthic bivalves in the Moselle. Zooplankton has been represented in the model by two categories, Brachionus -like and Keratella -like rotifers.
2. According to density estimates from field surveys (Bachmann V. et al . (1995) Hydroécologie Appliquée , 7 , 185, Bachmann V. & Usseglio-Polatera P. (1999) Hydrobiologia , 410 , 39), zebra mussel density varied among river stretches, and increased through the year to a maximum in summer. Dreissena filtration rates from the literature were used, and mussels have been assumed to feed on different phytoplankton categories (but less on large and filamentous diatoms) as well as on rotifers.
3. The simulations suggest a significant impact of benthic filter-feeders on potamoplankton and water quality in those stretches where the mussels are abundant, their impact being maximal in summer. Consequently, different plankton groups were not affected to the same extent, depending on their period of development and on indirect effects, such as predation by mussels on herbivorous zooplankton.
4. A daily carbon balance for a typical summer shows the effect of benthic filter-feeders on planktonic and benthic processes: the flux of organic matter to the bottom is greatly enhanced at high mussel density; conversely, production and breakdown of organic carbon in the water column are reduced. Mussel removal would drive the carbon balance of the river toward autotrophy only in the downstream stretches.  相似文献   

19.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

20.
Interactions of detrital particulates and plankton   总被引:1,自引:3,他引:1  
John M. Melack 《Hydrobiologia》1985,125(1):209-220
Detrital particulates, i.e. inorganic and non-living organic material of colloidal size and larger, span ten orders of magnitude in size and are ubiquitous in inland waters. Interactions between plankton and detrital particulates are reciprocal. Release of dissolved organics by living organisms enter the particulate size fraction by flocculation on bubbles or adsorption to inorganic particles. Bacteria benefit from attachment to particles and are agents in the aggregation of particulates. Nutrients released by decaying plankton can support phytoplankton growth. Potentially toxic compounds adsorb to particulates and then can enter pelagic food webs or sediment. Material egested by zooplankton contributes to the detrital pool which in turn is a food source for zooplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号