共查询到20条相似文献,搜索用时 0 毫秒
1.
《Channels (Austin, Tex.)》2013,7(6):475-476
Low voltage-activated (LVA) T-type calcium channels play critical roles in the excitability of many cell types and are a focus of research aimed both at understanding the physiological basis of calcium channel-dependent signaling and the underlying pathophysiology associated with hyperexcitability disorders such as epilepsy. These channels play a critical role towards neuronal firing in both conducting calcium ions during action potentials and also in switching neurons between distinct modes of firing. In this review the properties of the CaV3.1, CaV3.2 and CaV3.3 T-type channel isoforms is discussed in relation to their individual contributions to action potentials during burst and tonic firing states as well their roles in switching between firing states. 相似文献
2.
The molecular determinants of Alzheimer''s (AD) disease are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor for the disease is the development of an unbalanced homeostasis of two signaling cations: calcium (Ca2+) and zinc (Zn2+). Both ions serve a critical role in the physiological functioning of the central nervous system, but their brain deregulation promotes amyloid-β dysmetabolism as well as tau phosphorylation. AD is also characterized by an altered glutamatergic activation, and glutamate can promote both Ca2+ and Zn2+ dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further intracellular Ca2+ and Zn2+ rises and set the stage for a self-perpetuating harmful loop. These phenomena can be the initial steps in the pathogenic cascade leading to AD, therefore, therapeutic interventions aiming at preventing Ca2+ and Zn2+ dyshomeostasis may offer a great opportunity for disease-modifying strategies. 相似文献
3.
Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis 总被引:32,自引:0,他引:32
Calpains and caspases are two cysteine protease families that play important roles in regulating pathological cell death. Here, we report that m-calpain may be responsible for cleaving procaspase-12, a caspase localized in the ER, to generate active caspase-12. In addition, calpain may be responsible for cleaving the loop region in Bcl-xL and, therefore, turning an antiapoptotic molecule into a proapoptotic molecule. We propose that disturbance to intracellular calcium storage as a result of ischemic injury or amyloid beta peptide cytotoxicity may induce apoptosis through calpain- mediated caspase-12 activation and Bcl-xL inactivation. These data suggest a novel apoptotic pathway involving calcium-mediated calpain activation and cross-talks between calpain and caspase families. 相似文献
4.
Phospholipids containing polyunsaturated fatty acyl chains are prevalent among brain lipids, and regional differences in acyl chain distribution appear to have both functional and pathological significance. A method is described in which the combined application of GC and multiple reaction monitoring (MRM) MS yielded precise relative quantitation and approximate absolute quantitation of lipid species containing a particular fatty acyl chain in milligram-sized tissue samples. The method uses targeted MRM to identify specific molecular species of glycerophosphocholine lipids, glycerophospho-ethanolamine lipids, glycerophosphoinositol lipids, glycerophosphoserine lipids, glycero-phosphoglycerol lipids, and phosphatidic acids that contain esterified arachidonate (AA) and docosahexaenoate (DHA) separated during normal phase LC/MS/MS analysis. Quantitative analysis of the AA and DHA in the LC fractions is carried out using negative ion chemical ionization GC/MS and stable isotope dilution strategies. The method has been applied to assess the glycerophospholipid molecular species containing AA and DHA in microdissected samples of murine cerebral cortex and hippocampus. Results demonstrate the potential of this approach to identify regional differences in phospholipid concentration and reveal differences in specific phospholipid species between cortex and hippocampus. These differences may be related to the differential susceptibility of different brain regions to neurodegenerative disorders. 相似文献
5.
6.
Unlike F4-neuroprostanes (F4-NeuroPs), which are relatively selective in vivo markers of oxidative damage to neuronal membranes, there currently is no method to assess the extent of free radical damage to myelin with relative selectively. The polyunsaturated fatty acid adrenic acid (AdA) is susceptible to free radical attack and, at least in primates, is concentrated in myelin within white matter. Here, we characterized oxidation products of AdA as potential markers of free radical damage to myelin in human brain. Unesterified AdA was reacted with a free radical initiator to yield products (F2-dihomo-IsoPs) that were 28 Da larger than but otherwise closely resembled F2-isoprostanes (F2-IsoPs), which are generated by free radical attack on arachidonic acid. Phospholipids derived from human cerebral gray matter, white matter, and myelin similarly oxidized ex vivo showed that the ratio of esterified F2-dihomo-IsoPs to F4-NeuroPs was approximately 10-fold greater in myelin-derived than in gray matter-derived phospholipids. Finally, we showed that F2-dihomo-IsoPs are significantly increased in white matter samples from patients with Alzheimer's disease. We propose that F2-dihomo-IsoPs may serve as quantitative in vivo biomarkers of free radical damage to myelin from primate white matter. 相似文献
7.
Alzheimer''s disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despiterecent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thusthere is a need to understand the molecular mechanism behind the disease in order to improve the drug aspects of the disease. Weprovided two contributions in the field of proteomics in drug design. First, we have constructed a protein-protein interactionnetwork for Alzheimer''s disease reviewed proteins with 1412 interactions predicted among 969 proteins. Second, the diseaseproteins were given confidence scores to prioritize and then analyzed for their homology nature with respect to paralogs andhomologs. The homology persisted with the mouse giving a basis for drug design phase. The method will create a new drug designtechnique in the field of bioinformatics by linking drug design process with protein-protein interactions via signal pathways. Thismethod can be improvised for other diseases in future. 相似文献
8.
Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice 总被引:11,自引:0,他引:11
下载免费PDF全文

Leissring MA Akbari Y Fanger CM Cahalan MD Mattson MP LaFerla FM 《The Journal of cell biology》2000,149(4):793-798
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations. 相似文献
9.
In the past decade, RNA oxidation has caught the attention of many researchers, working to uncover its role in the pathogenesis of neurodegenerative diseases. It has been well documented that RNA oxidation is involved in a wide variety of neurological diseases and is an early event in the process of neurodegeneration. The analysis of oxidized RNA species revealed that at least messenger RNA (mRNA) and ribosomal RNA (rRNA) are damaged in several neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS). The magnitude of the RNA oxidation, at least in mRNA, is significantly high at the early stage of the disease. Oxidative damage to mRNA is not random but selective and many oxidized mRNAs are related to the pathogenesis of the disease. Several studies have suggested that oxidative modification of RNA affects the translational process and consequently produces less protein and/or defective protein. Furthermore, several proteins have been identified to be involved in handling of damaged RNA. Although a growing body of studies suggests that oxidative damage to RNA may be associated with neuron deterioration, further investigation and solid evidence are needed. In addition, further uncovering of the consequences and cellular handling of the oxidatively damaged RNA should be important focuses in this area and may provide significant insights into the pathogenesis of neurodegenerative diseases. 相似文献
10.
NAD attenuates oxidative DNA damages induced by amyloid beta-peptide in primary rat cortical neurons
《Free radical research》2013,47(7):794-805
AbstractOne major pathological hallmark of Alzheimer's disease (AD) is accumulation of senile plaques in patients’ brains, mainly composed of amyloid beta-peptide (Aβ). Nicotinamide adenine dinucleotide (NAD) has emerged as a common mediator regulating energy metabolism, mitochondrial function, aging, and cell death, all of which are critically involved in neuronal demise observed in AD. In this work, we tested the hypothesis that NAD may attenuate Aβ-induced DNA damages, thereby conferring neuronal resistance to primary rat cortical cultures. We found that co-incubation of NAD dose-dependently attenuated neurotoxicity mediated by Aβ25–35 and Aβ1-42 in cultured rat cortical neurons, with the optimal protective dosage at 50 mM. NAD also abolished the formation of reactive oxygen species (ROS) induced by Aβ25-35. Furthermore, Aβs were capable of inducing oxidative DNA damages by increasing the extents of 8-hydroxy-2´-deoxyguanosine (8-OH-dG), numbers of apurinic/apyrimidinic (AP) sites, genomic DNA single-stranded breaks (SSBs), as well as DNA double-stranded breaks (DSBs)/fragmentation, which can all be attenuated upon co-incubation with NAD. Our results thus reveal a novel finding that NAD is protective against DNA damage induced by existing Aβ, leading ultimately to neuroprotection in primary cortical culture. 相似文献
11.
Lee JT Xu J Lee JM Ku G Han X Yang DI Chen S Hsu CY 《The Journal of cell biology》2004,164(1):123-131
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism. 相似文献
12.
Martins IC Kuperstein I Wilkinson H Maes E Vanbrabant M Jonckheere W Van Gelder P Hartmann D D'Hooge R De Strooper B Schymkowitz J Rousseau F 《The EMBO journal》2008,27(1):224-233
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids. 相似文献
13.
《Free radical research》2013,47(12):1490-1495
Efficient function of the mitochondrial respiratory chain and the citric acid cycle (CAC) enzymes is required for the maintenance of human brain function. A conception of oxidative stress (OxS) was recently advanced as a disruption of redox signalling and control. Mitochondrial OxS (MOxS) is implicated in the development of Alzheimer's disease (AD). Thus, both pro- and anti-oxidants of the human body and MOxS target primarily the redox-regulated CAC enzymes, like mitochondrial aconitase (MAc). We investigated the specific activity of the MAc and MOxS index (MOSI) in an age-matched control (Co), AD and Swedish Familial AD (SFAD) post-mortem autopsies collected from frontal cortex (FC) and occipital primary cortex (OC) regions of the brain. We also examined whether the mitochondrial neuroprotective signalling molecules glutathione, melatonin and 17-β-estradiol (17βE) and mitochondrially active pro-oxidant neurotoxic amyloid-β peptide can modulate the activity of the MAc isolated from FC and OC regions similarly or differently in the case of Co, AD and SFAD. The activity of redox-sensitive MAc may directly depend on the mitochondrial oxidant/antioxidant balance in age-matched Co, AD and SFAD brain regions. 相似文献
14.
Mutations in the highly homologous presenilin genes encoding presenilin-1 and presenilin-2 (PS1 and PS2) are linked to early-onset Alzheimer's disease (AD). However, apart from a role in early development, neither the normal function of the presenilins nor the mechanisms by which mutant proteins cause AD are well understood. We describe here the properties of a novel human interactor of the presenilins named ubiquilin. Yeast two-hybrid (Y2H) interaction, glutathione S-transferase pull-down experiments, and colocalization of the proteins expressed in vivo, together with coimmunoprecipitation and cell fractionation studies, provide compelling evidence that ubiquilin interacts with both PS1 and PS2. Ubiquilin is noteworthy since it contains multiple ubiquitin-related domains typically thought to be involved in targeting proteins for degradation. However, we show that ubiquilin promotes presenilin protein accumulation. Pulse-labeling experiments indicate that ubiquilin facilitates increased presenilin synthesis without substantially changing presenilin protein half-life. Immunohistochemistry of human brain tissue with ubiquilin-specific antibodies revealed prominent staining of neurons. Moreover, the anti-ubiquilin antibodies robustly stained neurofibrillary tangles and Lewy bodies in AD and Parkinson's disease affected brains, respectively. Our results indicate that ubiquilin may be an important modulator of presenilin protein accumulation and that ubiquilin protein is associated with neuropathological neurofibrillary tangles and Lewy body inclusions in diseased brain. 相似文献
15.
Meinhardt J Tartaglia GG Pawar A Christopeit T Hortschansky P Schroeckh V Dobson CM Vendruscolo M Fändrich M 《Protein science : a publication of the Protein Society》2007,16(6):1214-1222
Increasing evidence indicates that polypeptide aggregation often involves a nucleation and a growth phase, although the relationship between the factors that determine these two phases has not yet been fully clarified. We present here an analysis of several mutations at different sites of the Abeta(1-40) peptide, including those associated with early onset forms of the Alzheimer's disease, which reveals that the effects of specific amino acid substitutions in the sequence of this peptide are strongly modulated by their structural context. Nevertheless, mutations at different positions perturb in a correlated manner the free energies of aggregation as well as the lag times and growth rates. We show that these observations can be rationalized in terms of the intrinsic propensities for aggregation of the Abeta(1-40) sequence, thus suggesting that, in the case of this peptide, the determinants of the thermodynamics and of the nucleation and growth of the aggregates have a similar physicochemical basis. 相似文献
16.
Chiappelli F Prolo P Cajulis KD Angeli A Dovio A Perotti P Pautasso M Sartori ML Saba L Mussino S Fraccalini T Fanto F Manfrini E Mocellini C Rosso MG Grasso E 《Bioinformation》2007,2(1):1-4
The emerging domain of epigenetics in molecular medicine finds application for a variety of patient populations. Here, we present fundamental neuroendocrine immune evidence obtained in patients with senile dementia of the Alzheimer's type (sDAT), and discuss the implications of these data from the viewpoint of translational epigenetics of Alzheimer's disease. We followed 18 subjects with mild sDAT treated with acetylcholinesterase inhibitors, and 10 control subjects matched for age in a repeated measure design every six months for 18 months. We monitored psychosocial profile (Mini-Mental State Examination, Functional Assessment Staging, Independence in Activities of Daily Living, Depression, Profile of Moods States) in parallel to immunophenotypic parameters of T cell subpopulations by flow cytometry. Based on change in the mini-mental state score at entry and at 18 months, patients with sDAT were assigned to a "fast progression" (delta greater than 2 points) or to a "slow progression" group (delta less than or equal to 2 points). The change in circulating activated T cells (CD3+Dr+) with time in patients with sDAT was significantly inversely correlated with the change in time in natural killer (NK) cytotoxic activity to cortisol modulation in these patients, which was greater in patients with fast progression, compared to slow progression sDAT. These data indicate underlying neuroendocrine immune processes during progression of sDAT. Our observations suggest that psychoimmune measures such as those we have monitored in this study provide relevant information about the evolving physiological modulation in patients with sDAT during progression of Alzheimer's disease, and point to new or improved translational epigenetic treatment interventions. 相似文献
17.
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular. 相似文献
18.
Alzheimer's disease‐causing proline substitutions lead to presenilin 1 aggregation and malfunction
下载免费PDF全文

Tziona Ben‐Gedalya Lorna Moll Michal Bejerano‐Sagie Samuel Frere Wayne A Cabral Dinorah Friedmann‐Morvinski Inna Slutsky Tal Burstyn‐Cohen Joan C Marini Ehud Cohen 《The EMBO journal》2015,34(22):2820-2839
Do different neurodegenerative maladies emanate from the failure of a mutual protein folding mechanism? We have addressed this question by comparing mutational patterns that are linked to the manifestation of distinct neurodegenerative disorders and identified similar neurodegeneration‐linked proline substitutions in the prion protein and in presenilin 1 that underlie the development of a prion disorder and of familial Alzheimer's disease (fAD), respectively. These substitutions were found to prevent the endoplasmic reticulum (ER)‐resident chaperone, cyclophilin B, from assisting presenilin 1 to fold properly, leading to its aggregation, deposition in the ER, reduction of γ‐secretase activity, and impaired mitochondrial distribution and function. Similarly, reduced quantities of the processed, active presenilin 1 were observed in brains of cyclophilin B knockout mice. These discoveries imply that reduced cyclophilin activity contributes to the development of distinct neurodegenerative disorders, propose a novel mechanism for the development of certain fAD cases, and support the emerging theme that this disorder can stem from aberrant presenilin 1 function. This study also points at ER chaperones as targets for the development of counter‐neurodegeneration therapies. 相似文献
19.
A. Ebneth R. Godemann K. Stamer S. Illenberger B. Trinczek E.-M. Mandelkow E. Mandelkow 《The Journal of cell biology》1998,143(3):777-794
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein–driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau''s binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end–directed transport mediated by kinesin-like motor proteins. Since in Alzheimer''s disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons. 相似文献