首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
土壤微生物群落结构沿海拔梯度的变异是微生物生物地理学分异和群落空间分布的重要内容,然而,热带森林土壤微生物多样性及其群落特征的海拔模式尚不明确。研究海南省尖峰岭自然保护区0—20cm和20—40cm土壤细菌多样性和群落组成沿海拔梯度(400—1410m)的变化及其与环境因子的关系。结果表明:在0—20cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高(峰顶降低)而增加,20—40cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高呈先升高后降低趋势;整体上,变形菌门、放线菌门、酸杆菌门、拟杆菌门、厚壁菌门在0—20cm中占优势,丰度总和占该层细菌总量的88.17%;变形菌门、放线菌门、酸杆菌门、厚壁菌门、绿弯菌门在20—40cm中占优势,丰度总和占该层细菌总量的90.82%;随海拔增加,0—20cm细菌多样性线性减少,20—40cm细菌多样性变化不显著;沿海拔梯度,0—20cm细菌群落组成可分为低(409—1018m),中(1018—1357m)和高(1410m)三个海拔聚集群落,20—40cm细菌群落组成随海拔无显著性变化;两土层细菌多样性与土壤pH显著正相关,土壤细菌群落组成在0...  相似文献   

2.
海拔对辽东栎林地土壤微生物群落的影响   总被引:10,自引:0,他引:10  
以北京东灵山辽东栎林地土壤为对象,运用氯仿熏蒸-浸提法及磷脂脂肪酸分析(PLFA)法,研究林木生长季节土壤微生物群落随海拔梯度的变化特征.结果表明:随着海拔升高,辽东栎林土壤微生物生物量碳、氮,以及微生物各类群含量均有差异但不显著;土壤细菌/真菌升高,而革兰氏阳性菌(G+)/革兰氏阴性菌(G-)降低.土壤微生物生物量碳、氮以及细菌、真菌、G+细菌、G-细菌的含量与土壤含水量、有机碳、全氮呈显著正相关,土壤真菌含量与土壤碳氮比值呈正相关.土壤微生物群落组成结构(细菌/真菌和G+细菌/G-细菌)的变化主要受土壤温度和土壤含水量的显著影响,说明土壤微生物群落结构对环境条件的变化敏感.随着全球变暖的加剧,暖温带辽东栎林地土壤真菌和G+细菌的比例有升高的趋势.  相似文献   

3.
贺兰山东坡不同海拔土壤微生物群落特征及其影响因素   总被引:1,自引:0,他引:1  
土壤微生物作为连接地上植物群落和地下生物过程的重要桥梁,在调控地下生态学过程中扮演着重要角色。然而,我们对旱区山地生态系统沿海拔梯度上的土壤微生物群落变化特征及其驱动因素尚不清楚。本研究以贺兰山1300~2800 m范围内7个海拔的土壤为研究对象,揭示贺兰山林下植物群落组成、土壤理化性质、土壤微生物群落海拔分布格局,采用方差分解和冗余分析探明影响土壤微生物群落的驱动因素。结果表明:随着海拔上升,土壤微生物总量和细菌生物量呈先增加后降低的变化趋势,真菌、放线菌、丛枝菌根真菌、革兰氏阳性菌和革兰氏阴性菌生物量呈现逐渐增加的变化趋势。真菌细菌比(F/B)显示,低海拔土壤细菌的积累能力强于真菌,而在高海拔则相反。革兰氏阳性菌与阴性菌比例(GP/GN)随海拔上升呈逐渐减小的趋势,表明随海拔上升土壤细菌和有机碳可利用度分别发生由“寡”到“富”和由“低”到“高”转变。植被属性、土壤物理和化学属性共同解释土壤微生物群落变异的95.7%。土壤有机碳(SOC)、土壤含水率(SWC)和全氮(TN)显著影响土壤微生物群落组成。本研究揭示了贺兰山东坡土壤微生物群落沿海拔梯度的分布模式及其驱动因素,可为深化认识旱...  相似文献   

4.
高原山地是对全球气候变化最为敏感的脆弱生态系统之一,研究高原山地土壤细菌群落沿海拔变化特征,对于揭示受气候变化和人为干扰的山地微生物群落结构和功能有十分重要的科学意义。研究以西藏岗巴拉山作为研究对象,运用Illumina MiSeq高通量测序技术,基于精细样方尺度分析了岗巴拉山沿海拔梯度土壤细菌群落组成和多样性的变化特征及其驱动因子。结果表明:岗巴拉山土壤细菌共包含36门125纲307目477科838属1878种,将12个海拔带分为高中低3组(低海拔从3800-4100 m、中海拔从4200-4500 m、高海拔从4600-4900 m),中海拔总分类操作单元(OTU)数最多,特有OTU数最少,土壤细菌群落丰富度随海拔升高呈单峰趋势,但其特异性随海拔呈U型分布格局。岗巴拉山土壤细菌群落中的优势菌门是放线菌门、酸杆菌门、变形菌门、绿弯菌门、疣微菌门和芽单胞菌门等,土壤细菌群落Shannon多样性指数随海拔升高而逐渐减小,而Simpson多样性指数在高海拔最高,Chao指数随海拔升高呈单峰变化趋势。主坐标分析(PCoA)表明土壤细菌群落结构在不同海拔梯度上存在显著差异,且低海拔土壤细菌群落组内也存在显著差异。冗余分析(RDA)表明海拔、pH、总氮、总磷和有机碳对土壤细菌群落结构有显著影响,与环境因子相关性分析表明海拔、pH、总氮、总磷和有机碳与土壤细菌群落结构显著相关,曼特尔检验表明pH和海拔是影响土壤细菌群落的关键因素。岗巴拉山土壤细菌多样性沿海拔梯度呈单调下降趋势,pH是影响土壤细菌群落沿海拔变化特征的关键环境因子,总氮、总磷和有机碳也是影响土壤细菌群落的重要环境因子。  相似文献   

5.
贺兰山不同海拔植被下土壤微生物群落结构特征   总被引:3,自引:1,他引:2  
为明确海拔变化对干旱区山地森林土壤微生物群落的影响,揭示环境因子改变后土壤微生物群落结构特征及影响因素。对贺兰山5个海拔梯度土壤理化性质进行测定,同时采用磷酸脂肪酸(PLFA)图谱法分析土壤微生物群落组成,通过主成分分析、冗余分析(RDA)探究土壤理化性质与土壤微生物群落相对丰度之间的相关关系。结果表明:土壤养分含量在不同海拔之间差异性显著(P<0.05),土壤有机碳和全氮含量随海拔的升高而升高,全磷含量随海拔升高先升高再降低再升高;土壤微生物量随海拔升高先升高后降低,土壤微生物的相对丰度在不同海拔之间存在差异(P<0.05);主成分分析表明,与第1主成分相关性较强的微生物类群为革兰氏阳性细菌(G~+)、革兰氏阴性细菌(G~-)和真菌;与第2主成分相关性较强的微生物类群为放线菌、原生动物和非特异性细菌。非特异性细菌和真菌与各土壤因子之间均有显著相关关系,而放线菌、G~+和G~-与各土壤因子相关性较弱,原生动物与土壤全磷含量的关系密切。海拔是影响特征微生物分布的重要因素,特征微生物的含量和相对丰度随海拔的升高先升高后降低,符合山地生态学中的"中部膨胀"理论。探明了贺兰山不同海...  相似文献   

6.
高寒森林土壤是最脆弱的陆地碳库之一,随着全球气候的变暖,冻融格局受到影响,这将导致土壤微生物群落结构发生变化进而影响土壤微生态过程。以西藏色季拉山不同海拔土壤为研究对象,基于16S rRNA测序技术探究微生物群落结构及多样性对季节性冻融的响应。结果表明:门水平上,冻融现象并未改变土壤细菌和真菌群落的优势菌群,变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和酸杆菌门(Acidobacteria)为细菌群落的优势菌门,担子菌门(Basidiomycota)和子囊菌门(Ascomycota)为真菌群落的优势菌门;属水平上,冻融前后微生物群落结构和组成差异较大,且细菌群落受冻融影响更剧烈,真菌群落受海拔影响更剧烈;OTU水平上,冻融使各海拔细菌群落和海拔3500 m、4300 m处真菌群落的α-多样性有较大提升,主要受黏粒和粉粒含量的影响;冻融使微生物群落组成在不同海拔间差异增大,且冻融前后的关键驱动因子不同,冻融前主要受碳氮比、速效钾、碳酸盐、土壤含水率、黏粒和粉粒含量的影响,冻融后主要受pH和有效磷的影响;相比于细菌,真菌群落结构的影响因素在海拔间的差异更大。本研究为深入理解气候暖化背景下不同海拔高寒森林土壤微生物对冻融的响应提供重要依据。  相似文献   

7.
土壤微生物作为森林生态系统的主要分解者,参与土壤养分循环,在维持土壤生态系统功能和服务中发挥着重要作用。探讨不同海拔土壤微生物群落结构和功能多样性的季节变化,对维持土壤生态系统稳定具有重要研究价值。以戴云山南坡不同海拔土壤为研究对象(900-1500 m),采用Biolog-ECO微平板法,研究不同海拔土壤微生物群落结构和功能多样性的季节变化(夏季与冬季),揭示驱动戴云山不同海拔土壤微生物季节变化的主要因素。结果表明:(1)夏季海拔1400 m区域土壤微生物的碳源利用最强,微生物活性最高。冬季表现为海拔900 m处土壤微生物对碳源利用最强,活性最高。(2)土壤微生物群落对碳源利用特征的研究表明,夏季与冬季中氨基酸类和羧酸类碳源是7个海拔土壤微生物利用的主要碳源,且夏季碳源利用程度高于冬季。(3)冗余分析表明夏季和冬季戴云山南坡7个海拔土壤微生物群落功能多样性均受土壤环境因子驱动,解释量分别为72.63%和44.12%,均高于地形因子的解释量。(4)土壤温度和全钾含量等因子是驱动夏季土壤微生物群落功能多样性变化的主要因素;土壤全钾、全磷、有效磷含量和坡向是驱动冬季土壤微生物群落功能多样性变化的主要因素。海拔和季节变化通过调节土壤理化性质和土壤酶活性,进而影响森林土壤微生物群落结构和功能多样性。  相似文献   

8.
历史因素对土壤微生物群落与外来细菌入侵间关系的影响   总被引:3,自引:0,他引:3  
群落的组成和结构如何影响其可入侵性一直是入侵生态学的研究热点。然而关于群落可入侵性和群落特征间关系的认知却很不统一。采用交叉互换的试验方法,首先将野外采集的两种长期不同施肥土壤(有机肥和化肥)进行灭菌并回接已方和对方的土壤悬液,研究土壤环境(历史非生物因素)和土壤微生物群落(历史生物因素)对重建土壤微生物群落特征的相对贡献。随后将用红色荧光蛋白标记的青枯菌作为外来种接入重建的土壤中,探究不同土壤微生物群落特征对外来细菌存活数量(前期入侵潜力)和存活时间(后期入侵潜力)的影响。结果表明,历史生物因素对重建土壤的原生动物数量、革兰氏阴性与阳性细菌比等群落特征和外来细菌的存活数量有影响;历史非生物因素对土壤微生物活性、细菌物种多样性和功能多样性等群落特征以及外来细菌入侵土壤后总的存活时间有影响;外来细菌入侵前期状况仅与原生动物数量、革兰氏阴性与阳性细菌比相关,而入侵后期的状况则仅与微生物活性、细菌物种多样性和功能多样性相关。总之,外来细菌在土壤中各时期的入侵潜力和土著微生物群落特征的相关性主要取决于二者是否由同种历史影响因素控制。本研究对于阐明生物群落结构与群落可入侵性之间关系,及指导土壤外来病原菌的防控均具有重要意义。  相似文献   

9.
海拔变化对凤阳山针阔混交林地土壤微生物群落的影响   总被引:3,自引:0,他引:3  
风阳山自然保护区是森林生态类型自然保护区,针阔混交林是保护区内的重要森林类型。为明确海拔变化对高山针阔混交林地土壤微生物群落的影响及初步影响机理,了解气候变暖后典型林分土壤微生物群落结构的变化。以黄山松在凤阳山的分布范围800—1800 m为准,选取900、1100、1300、1500、1700 m 5个海拔梯度,在每个海拔梯度的阳坡内选取排水较好、坡度较缓、长势适中的3个标准样地(20 m×20 m),于2016年8月用蛇形法于每块样地取样,用冰盒带回实验室,测定土壤理化性质及微生物群落。采用磷脂脂肪酸(PLFA)图谱分析确定土壤微生物群落组成及其丰度,同时对土壤微生物群落组成进行非度量多维标度(NMDS)排序,对土壤微生物群落组成结构进行分析。结果表明:随着海拔升高,针阔混交林样地内植物种类组成有所变化。土壤养分含量呈先升高后降低的趋势,差异性显著(P0.05);土壤微生物群落丰度之间存在显著差异,革兰氏阴性细菌丰度在高海拔处较大;土壤微生物群落组成非度量多维标度(NMDS)排序显示,随海拔升高,土壤微生物群落组成发生明显改变,可以分为三个类群,各海拔土壤微生物群落结构在两个NMDS轴上均呈现出显著差异(P0.05)。通过对土壤微生物群落丰度与土壤理化性质的冗余分析(RDA),发现土壤p H、容重、含水量、及有效磷含量对对土壤微生物群落丰度有不同程度的影响,土壤革兰氏阳性细菌、放线菌丰度与各土壤因子之间均有显著相关关系;革兰氏阴性细菌受土壤含水量及有效磷的含量影响较大;真菌丰度与土壤p H及有机碳含量之间存在相关关系;厌氧菌及16:1ω5c丰度与土壤因子间相关性较弱。海拔变化所引起的土壤理化性质的改变,是影响土壤微生物群落丰度的因素;6个微生物群落对海拔的适应程度是不同的,革兰氏阴性细菌对高海拔的低温环境适应能力较强。  相似文献   

10.
不同海拔红松林土壤微生物功能多样性   总被引:5,自引:0,他引:5  
韩冬雪  王宁  王楠楠  孙雪  冯富娟 《生态学杂志》2015,26(12):3649-3656
为全面了解红松林土壤微生物碳源利用特点,以长白山海拔700~1100 m红松林0~5和5~10 cm表土为研究对象,采用Biolog微平板法,分析了土壤微生物功能多样性沿海拔的垂直分布特征和变化规律.结果表明: 不同海拔红松林土壤微生物功能多样性差异显著,平均每孔颜色变化率(AWCD)随培养时间延长而增加,同一深度土层的AWCD值随海拔升高而降低;Shannon、Simpson和McIntosh多样性指数也随海拔升高呈现下降趋势,且不同海拔间3个多样性指数差异显著;物种多样性和功能多样性表现出相同的变化规律.土壤微生物对6大类碳源利用强度存在差异,各海拔土壤微生物对氨基酸类碳源利用率最高,为优势碳源;主成分分析表明,不同海拔土壤微生物在碳源利用上有明显的空间分异,土壤微生物功能多样性垂直地带性差异主要体现在对碳水类、氨基酸类和羧酸类碳源的利用上,其中碳水类尤为突出.对不同海拔土壤微生物群落功能多样性聚类分析表明,样地植被组成会对土壤微生物组成和功能活性产生重要影响.  相似文献   

11.
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.Subject terms: Soil microbiology, Microbial ecology  相似文献   

12.
A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land-use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land-use associated factors creating site-specific compositions. By employing a quantitative, null-based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.  相似文献   

13.
Mitchell Peninsula is located towards the East of the Windmill Islands in eastern Antarctica. It is an ice-free polar desert, and knowledge of its soil microbial taxonomic composition is limited. In this study, we investigated the soil microbial taxonomic composition using multiplex 454 pyrosequencing targeting the bacterial 16S rRNA and the fungal ITS genes; and the bacterial and fungal abundances were estimated using quantitative PCR. In total, 40 bacterial and five fungal phyla were identified comprising 111 bacterial and 22 fungal classes, respectively. Mitchell Peninsula soil exhibited a unique bacterial taxonomic profile. In contrast to the usual dominance of Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes in polar and temperate soils, Mitchell Peninsula was rich in the poorly studied Chloroflexi (31.7 %), candidate divisions WPS-2 (8.1 %) and AD3 (5.1 %), while the commonly observed Bacteroidetes and Firmicutes were present in relative abundances below 1 %. The fungal community consisted of Ascomycota (77 %) and Basidiomycota (10 %), and was dominated by the lichenous fungal class Lecanoromycetes (46.4 %). Network analysis revealed the presence of several microbial clusters that each potentially occupied a different environmental niche, and fewer numbers of correlations were identified between bacteria within each cluster compared with the lichen community, where extensive community dynamics may be present. As Mitchell Peninsula exhibits a unique microbial taxonomic composition, not previously observed in any reported polar or temperate ecosystem, we believe it is a potential microbial biodiversity “hotspot”, which warrants further investigation to examine the role of the dominance of these uncharacterised candidate divisions in this extreme ecosystem.  相似文献   

14.
Slash‐and‐burn clearing of forest typically results in increase in soil nutrient availability. However, the impact of these nutrients on the soil microbiome is not known. Using next generation sequencing of 16S rRNA gene and shotgun metagenomic DNA, we compared the structure and the potential functions of bacterial community in forest soils to deforested soils in the Amazon region and related the differences to soil chemical factors. Deforestation decreased soil organic matter content and factors linked to soil acidity and raised soil pH, base saturation and exchangeable bases. Concomitant to expected changes in soil chemical factors, we observed an increase in the alpha diversity of the bacterial microbiota and relative abundances of putative copiotrophic bacteria such as Actinomycetales and a decrease in the relative abundances of bacterial taxa such as Chlamydiae, Planctomycetes and Verrucomicrobia in the deforested soils. We did not observe an increase in genes related to microbial nutrient metabolism in deforested soils. However, we did observe changes in community functions such as increases in DNA repair, protein processing, modification, degradation and folding functions, and these functions might reflect adaptation to changes in soil characteristics due to forest clear‐cutting and burning. In addition, there were changes in the composition of the bacterial groups associated with metabolism‐related functions. Co‐occurrence microbial network analysis identified distinct phylogenetic patterns for forest and deforested soils and suggested relationships between Planctomycetes and aluminium content, and Actinobacteria and nitrogen sources in Amazon soils. The results support taxonomic and functional adaptations in the soil bacterial community following deforestation. We hypothesize that these microbial adaptations may serve as a buffer to drastic changes in soil fertility after slash‐and‐burning deforestation in the Amazon region.  相似文献   

15.
群落生态构建过程是近年来微生物群落生态学的研究热点。室内饲养可引起肠道菌群的剧烈变化,这种改变是否会影响群落的构建过程,一直未见报道。本文以高原鼠兔(Ochotona curzoniae)为对象,采用16S rRNA测序技术,探讨室内饲养和野生高原鼠兔肠道微生物群落在结构、功能以及群落构建过程等方面的差异。结果表明,在繁殖季节,室内饲养组的群落多样性指数和均匀度指数均显著低于野外组;群落丰度指数和群落覆盖度指数在非繁殖季节显著高于繁殖季节。拟杆菌门(Bacteroidetes)在室内饲养组显著富集,而厚壁菌门(Firmicute)和浮霉菌门(Planctomycetes)在野外组显著富集;在野外组,Epsilonbacteraeota和软壁菌门(Tenericutes)在繁殖季节显著富集。菌群功能分析显示,室内饲养组与野生组在细胞通讯和心血管疾病通路存在显著差异;野外组繁殖季节与非繁殖季节肠道菌群功能在氨基酸代谢、碳水化合物代谢和脂质代谢等通路存在显著差异。中性模型拟合结果表明,室内饲养明显降低了菌群构建的随机过程。野外组生理状态也会降低菌群构建的随机性。本研究证明室内饲养和宿主生理状...  相似文献   

16.
北京东灵山树线处土壤细菌的PICRUSt基因预测分析   总被引:3,自引:0,他引:3  
厉桂香  马克明 《生态学报》2018,38(6):2180-2186
树线变动会对生物多样性分布以及生态系统功能的维持造成深远影响,研究树线处土壤微生物群落及其功能,对预测高海拔生态系统响应气候变化具有重要价值。采用Mi Seq高通量测序技术及PICRUSt基因预测分析方法,对北京东灵山辽东栎林及树线之上亚高山草甸的土壤细菌群落及功能进行对比研究,结果表明:土壤细菌物种多样性在树线处没有发生显著的变化,沿海拔也没有呈现出明显趋势,但细菌群落结构以及预测功能基因均发生了变化。在39个二级预测功能分类中有10个子功能的相对多度在森林和草甸中具有明显差异。其中,其他次生产物代谢的生物合成、转录、多糖生物合成和代谢、酶家族、信号分子及交互作用、环境适应、细胞生长和死亡等的功能基因在森林中明显高于草甸中;而维他命及辅因子代谢、膜运输、内分泌系统等的功能基因在草甸中偏高。  相似文献   

17.
胡伟  向建华  向言词  陈燕 《应用生态学报》2020,31(11):3842-3850
氮掺杂碳纳米颗粒(N-CNPs)具有较高的农田氮肥增效潜力,但其对稻田根际土壤细菌群落结构和功能的影响尚不明确。本研究以连续3年施用低(1.2%,N-CNPs1)、中(6.7%,N-CNPs2)和高(9.3%,N-CNPs3)氮掺杂碳纳米颗粒的稻田根际土壤为研究对象,采用高通量测序技术和PICRUSt 功能预测方法研究其细菌群落组成和代谢功能变化。结果表明: 连续3年配施N-CNPs能提升稻田根际土壤细菌群落多样性,改变细菌群落功能;不同氮掺杂量水平间存在差异,其中以中氮掺杂量(N-CNPs2)碳纳米颗粒处理变化幅度最大。细菌群落分析结果指出,配施N-CNPs提升了根际土壤中变形菌门、酸杆菌门和疣微菌门的相对丰度,降低了浮霉菌门、绿弯菌门、硝化螺旋菌门和芽单胞菌门的相对丰度。PICRUSt 功能预测结果表明,在二级预测功能分类中,配施N-CNPs处理的氨基酸代谢、碳水化合物代谢和脂类代谢功能得到增强,而其他代谢功能则受到减弱。KEGG 直系同源基因簇丰度热图结果显示,N-CNPs2处理能提升根际土壤碳、氮代谢相关的细菌群落的相对丰度。  相似文献   

18.
19.
入侵植物紫茎泽兰根围土壤化学及微生物属性海拔变化格局 热带地区山地生态系统是外来植物入侵的重要区域,是研究外来植物扩散机制的“天然实验室”。本研究试图探明入侵植物紫茎泽兰(Ageratina adenophora)根围土壤化学(pH及土壤养分)和微生物(酶活性和细菌群落)特性沿海拔梯度的变化规律。本研究以哀牢山(1400–2400 m)不同海拔梯度分布的紫茎泽兰为研究对象,采集根围土,测定土壤有机碳及养分含量,以及植物根系碳和氮含量。分析与土壤有机碳、氮及磷循环的酶活性,通过计算土壤酶化学计量参数,探究微生物生长代谢利用碳、氮及磷的规律。借助高通量测序技术对16S rDNA的V4区测序,分析细菌群落结构。研究结果显示,海拔显著影响紫茎泽兰根系氮及及其根围土壤有机碳含量,且这些测量指标在海拔2000 m  出现拐点。处在低海拔,入侵植物快速生长耗竭土壤中相对缺乏的磷,磷素是限制微生物生长的重要养分元素;而在高海拔,微生物需要投入更多的能量降解有机质获取碳,导致微生物生长的碳限制。细菌群落β多样性及pH  是决定不同海拔酶化学计量参数差异的重要因子;变形菌门和酸杆菌门是决定微生物养分利用状况的主要细菌门类。这些结果阐明了不同海拔梯度上紫茎泽兰根围土壤微生物的养分利用规律,有助于认识入侵植物沿海拔扩散机制。  相似文献   

20.
系统研究和分析辣椒青枯病常发地发病与健康植株土壤微生物群落结构特征,为辣椒青枯病的绿色防治提供理论依据.基于16SrDNA基因高通量测序技术,对辣椒青枯病发病和健康植株根际土壤微生物群落结构和组成进行分析,同时采用biologyeco平板培养技术研究其土壤微生物群落代谢多样性和功能多样性的特征.结果表明,辣椒青枯病发病和健康植株根际土壤微生物群落组成之间存在显著差异,辣椒青枯病发病土壤的OTU为4566个,辣椒青枯病健康土壤的OTU为4167个.依据OTU所属细菌物种信息对土壤细菌群落结构进行分析,变形菌门在发病和健康土壤中均为优势细菌类群,其次为放线菌门类群.其中健康植株根际土壤中芽单胞菌门(Gemmatimonadetes)、装甲菌门(Armatimonadetes)的相对丰度比发病植株的分别高出了4.37,3.87倍,而发病植株根际土壤中厚壁菌门(Firmicutes)的相对丰度比健康植株的高出了3.87倍.辣椒青枯病发病土壤和健康土壤的土壤微生物代谢多样性也存在显著差异,同时,健康土壤中其微生物群落代谢得到显著增强,特别是对酚类化合物的利用显著增多,对辣椒抗病性存在显著的影响.研究表明,辣椒青枯病发病和健康植株根际土壤微生物群落组成和结构之间存在显著差异,并且健康土壤的微生物群落对酚类化合物的利用显著增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号