首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(5):1211-1219
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.  相似文献   

2.
3.
大约30%的乳腺癌中有表皮生长因子受体家族蛋白HER2的过表达,此类癌症的预后差,恶性程度高。RNA干涉(RNAi)是最近发展起来能特异性抑制哺乳动物细胞中基因表达的新技术。本文在以往获得的能够产生良好基因沉默效应的小干涉RNA(siRNA)的基础上,构建了U6和H1双启动子siRNA表达载体,并转染HER2高表达乳腺癌SKBR3细胞定量测定了其HER2下调效应。随后,siRNA表达盒经LR重组反应被克隆入慢病毒载体中,在成功包装成病毒后,感染SKBR3并经荧光定量PCR、蛋白印迹杂交和流式细胞仪一系列实验证明慢病毒介导的RNAi确实能有效地下调肿瘤抗原HER2的表达。细胞长期增殖实验表明经慢病毒处理后细胞生长得到抑制。我们的研究为进一步阐明HER2与癌症恶化的关系以及发展新的基因治疗药物提供了工具和可能。  相似文献   

4.
Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naïve SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may be extremely helpful to design successful combinatorial strategies aimed to circumvent the occurrence of de novo resistance to HER2-directed drugs using survivin antagonists.  相似文献   

5.
6.
7.
8.
Endothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ETA receptor (R) and ETBR on cancer cells. High levels of tumor ET-1 and ETAR are associated with poor survival of lung cancer patients. Here the effects of ET-1 on epidermal growth factor (EGF)R and HER2 transactivation were investigated using non-small cell lung cancer (NSCLC) cells. ETAR mRNA was present in all 10 NSCLC cell lines examined. Addition of ET-1 to NCI-H838 or H1975 cells increased EGFR, HER2 and ERK tyrosine phosphorylation within 2 min. The increase in EGFR and HER2 transactivation caused by ET-1 addition to NSCLC cells was inhibited by lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor) or Tiron (superoxide scavenger). ET-1 addition to NSCLC cells increased cytosolic Ca2+ and reactive oxygen species. ET-1 increased NSCLC clonal growth, whereas BQ123, ZD4054, lapatinib or gefitinib inhibited proliferation. The results indicate that ET-1 may regulate NSCLC cellular proliferation in an EGFR- and HER2-dependent manner.  相似文献   

9.
《MABS-AUSTIN》2013,5(2):340-353
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

10.
11.
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

12.
HER2与肿瘤浸润转移   总被引:1,自引:0,他引:1  
原癌基因HER2/neu编码的2型人类表皮生长因子受体(human epidermal growth factor receptor type2,HER2)在许多肿瘤中有不同程度的表达。HER2被激活后可通过多种途径增强肿瘤细胞的浸润、转移能力,比如:促进肿瘤细胞增殖、抑制其凋亡、增加基质金属蛋白酶(matrix metalloproteinase,MMP)和血管内皮生长因子(vascular endot-helial growth factor,VEGF)等的表达。阐明HER2与肿瘤浸润转移的关系,将有可能为延长患者生存期,减少肿瘤复发、转移的针对性治疗提供理论依据。  相似文献   

13.
A relevant clinical problem in the treatment of ovarian cancer (OC) is the development of resistance to chemotherapy, frequently due to genetic variations in enzymes and receptors. Changes in the HER2 receptor have been associated with breast and ovarian cancers. The role of a polymorphism in the HER2 gene in the clinical outcome of OC patients was investigated in this study. We characterized DNA samples from 111 patients with OC treated with cisplatin and paclitaxel, using PCR-RFLP. Our results indicate that patients carrying the valine homozygotic genotype present a lower overall survival mean, suggesting a role for this polymorphism in the outcome of ovarian cancer patients. The G allele has been implicated in the formation of active HER2 receptors, with a more aggressive phenotype. We hypothesize that HER2 genotypes can be predictive biomarkers in ovarian cancer, contributing to a genetic individual profile of great interest in clinical oncology.  相似文献   

14.
Chiang CT  Way TD  Tsai SJ  Lin JK 《FEBS letters》2007,581(30):5735-5742
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.  相似文献   

15.
Vasculogenic mimicry (VM) refers to the condition in which tumour cells mimic endothelial cells to form extracellular matrix‐rich tubular channels. VM is more extensive in more aggressive tumours. The human epidermal growth factor receptor 2 (HER2) gene is amplified in 20–30% of human breast cancers and has been implicated in mediating aggressive tumour growth and metastasis. However, thus far, there have been no data on the role of HER2 in VM formation. Immunohistochemical and histochemical double‐staining methods were performed to display VM in breast cancer specimens. Transfection in MCF7 cells was performed and clones were selected by G418. The three‐dimensional Matrigel culture was used to evaluate VM formation in the breast cancer cell line. According to statistical analysis, VM was related to the presence of a positive nodal status and advanced clinical stage. The positive rate of VM increased with increased HER2 expression. In addition, cases with HER2 3+ expression showed significantly greater VM channel count than those in other cases. The exogenous HER2 overexpression in MCF‐7 cells induced vessel‐like VM structures on the Matrigel and increased the VM mediator vascular endothelial (VE) cadherin. Our data provide evidence for a clinically relevant association between HER2 and VM in human invasive breast cancer. HER2 overexpression possibly induces VM through the up‐regulation of VE cadherin. Understanding the key molecular events may provide therapeutic intervention strategies for HER2+ breast cancer.  相似文献   

16.
HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.  相似文献   

17.
Human epidermal growth factor receptor 2 (HER2) belongs to the EGFR family of receptor tyrosine kinases that comprises four members. As opposed to the other family members, HER2 does not require ligand binding for activation. Hence, HER2 molecules can undergo spontaneous dimerization, autophosphorylation and activation of downstream signaling pathways especially under conditions of overexpression, a commonly encountered phenomenon in breast cancer. In this study, we sought to investigate the mechanism by which HER2 musters signaling and transformation potency. We show that HER2 overexpression per se induces a significant increase in basal mitogenic and cell survival signaling, which was augmented by EGF stimulation. Inhibition of the normally expressed EGFR significantly suppressed the ability of overexpressed HER2 to induce enhanced signaling and cell transformation, suggesting that HER2 requires the EGFR and potentially other members to maximize its signaling and transformation potency. The novel observation revealed by prolonged EGF stimulation studies was the biphasic signaling pattern in the presence of HER2 overexpression that suggested the induction of a short-circuited mechanism, permitting sustained signaling. Our results further show that the short-circuited signaling was due to the re-shuttling of internalized receptor molecules to the Rab11-positive recycling endosomes, while suppressing channeling to the LAMP1-positive lysosome-targeting endosomes. Therefore, HER2's oncogenicity is dependent, not only on its constitutively active nature, but also on its ability to muster collaborative signaling from family members through modulation of ligand-induced receptor regulation.  相似文献   

18.
19.
The taxanes are used alone or in combination with anthracyclines or platinum drugs to treat breast and ovarian cancer, respectively. Taxanes target microtubules in cancer cells and modifiers of taxane sensitivity have been identified in vitro, including drug efflux and mitotic checkpoint proteins. Human epidermal growth factor receptor 2 (HER2/ERBB2) gene amplification is associated with benefit from taxane therapy in breast cancer yet high HER2 expression also correlates with poor survival in both breast and ovarian cancer. The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), which we identified as a component of the U5 snRNP also plays a role in regulating the spindle assembly checkpoint (SAC) in response to microtubule-targeting drugs. In this study, we found a positive correlation between PRP4K expression and HER2 status in breast and ovarian cancer patient tumors, which we determined was a direct result of PRP4K regulation by HER2 signaling. Knock-down of PRP4K expression reduced the sensitivity of breast and ovarian cancer cell lines to taxanes, and low PRP4K levels correlated with in vitro-derived and patient acquired taxane resistance in breast and ovarian cancer. Patients with high-grade serous ovarian cancer and high HER2 levels had poor overall survival; however, better survival in the low HER2 patient subgroup treated with platinum/taxane-based therapy correlated positively with PRP4K expression (HR = 0.37 [95% CI 0.15-0.88]; p = 0.03). Thus, PRP4K functions as a HER2-regulated modifier of taxane sensitivity that may have prognostic value as a marker of better overall survival in taxane-treated ovarian cancer patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号