首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Navitoclax (ABT-263), an inhibitor of the pro-survival BCL-2 family proteins BCL-2, BCL-XL and BCL-W, has shown clinical efficacy in certain BCL-2-dependent haematological cancers, but causes dose-limiting thrombocytopaenia. The latter effect is caused by Navitoclax directly inducing the apoptotic death of platelets, which are dependent on BCL-XL for survival. Recently, ABT-199, a selective BCL-2 antagonist, was developed. It has shown promising anti-leukaemia activity in patients whilst sparing platelets, suggesting that the megakaryocyte lineage does not require BCL-2. In order to elucidate the role of BCL-2 in megakaryocyte and platelet survival, we generated mice with a lineage-specific deletion of Bcl2, alone or in combination with loss of Mcl1 or Bclx. Platelet production and platelet survival were analysed. Additionally, we made use of BH3 mimetics that selectively inhibit BCL-2 or BCL-XL. We show that the deletion of BCL-2, on its own or in concert with MCL-1, does not affect platelet production or platelet lifespan. Thrombocytopaenia in Bclx-deficient mice was not affected by additional genetic loss or pharmacological inhibition of BCL-2. Thus, BCL-2 is dispensable for thrombopoiesis and platelet survival in mice.Platelets are anucleate blood cells that play essential roles in haemostasis, wound healing and a range of other processes, including inflammation and immunity.1 They are produced by megakaryocytes, large polyploid cells that develop primarily in the bone marrow, spleen and foetal liver.2 Recent work has demonstrated that the survival of megakaryocytes and platelets is governed by the BCL-2 family proteins.3 Both cell types possess a classical BAK/BAX-mediated intrinsic apoptosis pathway that must be restrained in order for them to develop and survive.In platelets, BCL-XL is the critical pro-survival BCL-2 family member required to keep BAK and BAX in check. The first evidence of this came from Wagner et al.,4 who reported severe thrombocytopaenia in mice after MMTV-Cre-mediated deletion of Bclx in the haematopoietic system, skin and various secretory tissues. It has since been shown that megakaryocyte-restricted deletion of Bclx in mice reduces platelet lifespan from ~5 days to ~5 h, with a concomitant decrease in platelet counts to ~2% of wild-type levels.5, 6 Pharmacological inhibition of BCL-XL with the BH3 mimetics ABT-7377 or Navitoclax (ABT-263)8 (which both also inhibit BCL-2 and BCL-W) triggers BAK/BAX-mediated platelet apoptosis.9, 10, 11 As a result, these drugs cause dose-dependent thrombocytopaenia in mice, dogs and humans.9, 11, 12, 13, 14 Indeed, thrombocytopaenia is the dose-limiting toxicity for Navitoclax.12, 13, 14 This fact provided additional impetus for the development of agents that specifically target BCL-2, beginning with ABT-199,15 a BCL-2-selective antagonist currently in clinical trials for the treatment of a range of haematological malignancies including chronic lymphocytic leukaemia, non-Hodgkin''s lymphoma, follicular lymphoma, mantle cell lymphoma, multiple myeloma and acute myeloid leukaemia. ABT-199 has already shown very promising anti-tumour activity, with little to no impact on platelet counts.15, 16 These data suggest that BCL-2 is dispensable for the development and survival of platelets.In megakaryocytes, BCL-XL is also critical for survival. Although not absolutely required for their growth and maturation, BCL-XL is essential for megakaryocytes to proceed safely through pro-platelet formation and platelet shedding.5 In addition to BCL-XL, megakaryocytes also depend on the pro-survival activity of MCL-1. Conditional deletion of Mcl1 alone has no effect on this lineage. In contrast, combined megakaryocyte-specific loss of Bclx and Mcl1 results in the failure of megakaryopoiesis, systemic haemorrhage and embryonic lethality.5, 17, 18 These defects are rescued by deletion of Bak and Bax.18Consistent with the genetic studies, administration of ABT-737 to Mcl1Pf4Δ/Pf4Δ mice, which lack MCL-1 in megakaryocytes and platelets, induces acute, fulminant BAK/BAX-dependent megakaryocyte apoptosis. Given that, in addition to BCL-XL, ABT-737 also targets BCL-2,7 these data suggested that BCL-2 might also contribute to the development and survival of the megakaryocyte lineage. This is supported by recent studies demonstrating that neonatal human platelets contain increased levels of BCL-2 relative to adult counterparts,19 and that platelet lifespan is extended in transgenic mice expressing BCL-2 under the control of the pan-haematopoietic Vav promoter.20 In light of these observations, and intense ongoing activity surrounding the development of novel BH3 mimetics,21 we set out to elucidate the role of BCL-2 in megakaryocytes and platelets. Mice with a megakaryocyte-specific deletion of Bcl2, either alone or in combination with deletion of Mcl1 or Bclx, were generated. The effect of these mutations, and of BCL-2 or BCL-XL-selective BH3 mimetics, on the megakaryocyte lineage was assessed.  相似文献   

2.
3.
Survival and proliferation of cancer cells are often associated with hyperactivity of the serine/threonine kinase, Akt. Herein, we show that prosurvival activity of Akt can be converted into prodeath activity by embedding an Akt recognition sequence in the apoptogenic BH3 domain of human BIM. The recognition sequence was created by introducing two mutations, I155R and E158S, into the core region of the BIM BH3 domain. Although a 21-mer BIM BH3 peptide containing these two mutations bound weakly to BCL-XL and BCL-2, this peptide with phosphorylation of Ser158 bound to these proteins with a dissociation constant of <10 nM. The crystal structure of the phosphorylated peptide bound to BCL-XL revealed that the phospho-Ser158 makes favorable interactions with two BCL-XL residues, which cannot be formed with unphosphorylated Ser158. Remarkably, the designed peptide showed a cytotoxic effect on PTEN-null PC3 tumor cells whose Akt activity is aberrantly high. The cell-killing activity disappeared when the cellular Akt activity was lowered by ectopic PTEN expression. Thus, these results lay a foundation for developing a peptide or protein agent that is dormant in normal cells but is transformed into a potent apoptogenic molecule upon phosphorylation by hyperactivity of Akt in cancer cells.The interplay between the BCL-2 family proteins regulates mitochondrion-mediated apoptotic cell death.1, 2 The BCL-2 family proteins are characterized by having at least one BCL-2 homology (BH) domain, and they are classified into three distinct subgroups based on their functional and structural features. One subgroup consists of BAX and BAK, which contain the BH1-BH4 domains and mediate apoptosis by increasing the permeability of the mitochondrial outer membrane (MOM) and thus leading to the release of the apoptogenic factors, such as cytochrome c and Smac/Diablo.3, 4, 5, 6 Another subgroup is composed of antiapoptotic proteins, BCL-2, BCL-XL, BCl-w, MCL-1, A1 and BCL-B, which contain the BH1-BH4 domains that are arranged to form an extended hydrophobic groove known as the BH3-binding groove.7 The remaining subgroup is composed of a diverse set of proteins that are unrelated to each other except for the possession of the BH3 domain.7 These BH3-only proteins sense and convey apoptotic cell death signals, ultimately leading to the activation of BAX and BAK.8, 9 The antiapoptotic BCL-2 subfamily proteins bind the BH3 domain of BAX/BAK and of the BH3-only proteins through their BH3-binding groove.10, 11, 12, 13, 14, 15Biochemical studies have discovered that a number of the BH3-only proteins termed ‘activators'', such as BID and BIM, bind directly to BAX and induce its activation, whereas other BH3-only proteins termed ‘sensitizers'' induce apoptosis by releasing the activators sequestered by the antiapoptotic proteins.5, 16, 17 A recent crystallographic study revealed that the BID BH3 peptide binds to the canonical BH3-binding groove of BAX and induces a pronounced conformational change that exposes the BH3 domain of BAX.18 The activated BAX oligomerizes to induce the permeabilization of the MOM.6 The antiapoptotic BCL-2 proteins were suggested to sequester the BH3 domains of both BAX and the activator BH3-only proteins to prevent the BAX oligomerization.18Apoptosis is attenuated in cancer cells because of the abundance of antiapoptotic BCL-2 proteins and/or prevention of apoptosis induction. Anticancer BH3 peptides have been developed, especially those derived from BIM, which interacts with all of the antiapoptotic proteins with extremely high affinity.15, 19 These BH3 peptides exhibit a broad and multimodal targeting of the BCL-2 family proteins.20, 21, 22 Promising small molecular anticancer compounds have also been developed that mimic the BH3 peptides and bind to the surface groove of the antiapoptotic proteins.23 ABT-737 and ABT-263 selectively bind to and lower the amounts of the functional BCL-2, BCL-XL and BCL-w proteins to induce the apoptotic death of tumor cells that depend especially on the overexpression of the three proteins.24, 25 The BH3 peptides and the BH3 mimetics both bear an intrinsic shortcoming in that they inhibit the BCL-2 family proteins not only in cancer cells but also in normal cells as they cannot distinguish cancerous from normal cells.One of the hallmarks of many cancer and tumor cells is the hyperactivation of the serine/threonine (Ser/Thr) protein kinase Akt, which is a key signaling molecule in the cellular survival pathway.26 In many types of cancers, including glioma, prostate cancer and breast cancer, Akt is required to maintain a proliferative state and for progression into a more malignant state in conjunction with genetic mutations.26, 27, 28We set out to develop a molecule that can respond to the hyperactivity of Akt and can lead to the death of cancer cells. Herein, we describe the embedment of the Akt recognition sequence into the BIM BH3 peptide and the cancer cell-specific apoptogenic property of the resulting BIM BH3 peptide variant characterized by X-ray crystallography, calorimetry and cell-based biochemistry.  相似文献   

4.
Endostatin (ES) inhibits angiogenesis, reducing tumor growth in animal models. However, it has low therapeutic effect in human clinical trials. BAX is a member of the BCL-2 family of proteins; its proapoptotic (BH3) domain interacts with other members of the family in the cytoplasm, to induce apoptosis. Here, we fused the BAX BH3 domain with murine ES, to enhance ES potency. Endothelial cells specifically internalize the fusion protein ES-BAX. The presence of the BAX domain enhances endothelial cell death by apoptosis by 1.8-fold and diminishes microvessel outgrowth in the rat aortic ring assay by 6.5-fold. Daily injections of 15 μg of ES-BAX/g in tumor-bearing mice reduce tumor weight by 86.9% as compared with ES-treated animals. Co-immunoprecipitation assays confirmed that ES-BAX interacts with members of the BCL-2 family. Also, ES interacts with BCL-2, BCL-XL, and BAK in endothelial cell lysates, suggesting a potential new mechanism for the apoptosis induction by ES. The superiority of the ES-BAX antiangiogenic effect indicates that this fusion protein could be a promising therapeutic alternative to treat cancer.Endostatin (ES) is a specific inhibitor of endothelial cell proliferation, migration, invasion, tube formation, angiogenesis, and tumor growth in animal models.1, 2 Treatment with ES does not produce side effects or induce drug resistance.1 ES exerts its biological activities by binding to cell surface receptors, a process that triggers intracellular signaling cascades. Proteins such as nucleolin, matrix metalloproteinase 2, integrins, tropomyosin, glypicans, and laminin-1 are possible ES receptors that display binding affinities and that were described to be involved in the ES antiangiogenic function.3, 4, 5, 6, 7The necessity to administer high ES levels on a daily basis (15–600 mg/m2/day),8 the need to adjust doses,9 and the low antitumoral effect observed in clinical assays in humans10 have limited the use of ES to treat human cancer. Therefore, modifying the ES structure might improve its proapoptotic activity and provide better therapeutic protocols for human patients with cancer.The B-cell lymphoma 2 (BCL-2) family of proteins constitutes regulators of the apoptosis intrinsic pathway.11, 12 The BCL-2 members can be divided into three main subclasses that are partly defined by the homology shared within four conserved regions. These regions, termed BCL-2 homology (BH) 1–4 domains, correspond to α-helices with similar sequences that dictate protein structure and function. The antiapoptotic subfamily members BCL-2, B-cell lymphoma-extra large (BCL-XL), BCL-W, MCL-1, and A1 contain three or four BH domains. The apoptosis effectors BCL-2-associated X-protein (BAX) and BCL-2 antagonist/killer (BAK) are subfamily relatives that possess structures in the domains BH1 through BH3; they closely resemble their prosurvival cognates.13, 14 The proapoptotic ‘BH3-only'' proteins are related to the other members by the short signature BH3 domain, which is essential for their killing function.15, 16 The apoptotic switch operates through interactions between the proteins within the subfamilies. The structure of the prosurvival BCL-XL monomer revealed that its BH1, BH2, and BH3 domains are in close proximity and create a hydrophobic pocket that can accommodate a BH3 domain of the BAK proapoptotic member.17 In viable cells, the multidomains BAX and BAK exist as inactive monomers. Inactive BAX resides in the cytosol or loosely attaches to membranes; its C-terminal α9 helix occupies its hydrophobic pocket.13 Upon receipt of a death signal by a triggering BH3 helix, BAX transforms into a fully activated monomer that can propagate its own activation.18 Activated BAX translocates to the mitochondria, forming a putative homo-oligomer and generating pores that irreversibly damages these organelles.19 Consequently, proapoptogenic factors are released, activating the executioner caspases.20, 21 The BAX BH3 domain confers BAX killing functionality. The minimal portion of BAK, critical for the heterodimerization and proapoptotic function, consists of a 15/16-amino acid peptide mapped to the BH3 domain.15, 17, 22Impaired apoptosis is a critical step in tumor development. Enhanced levels of the prosurvival BCL-2 family members or, alternatively, the loss or inactivation of the pro-death relatives frequently occur in cancer.23 Therefore, scientists have designed strategies to induce downstream apoptotic events that could overcome the inhibition of tumor cells apoptosis by either delivering proapoptotic BH3 peptides24, 25 or using compounds that function as cell permeable, small molecular mimics of the BH3 domain.26 However, there is concern about the therapeutic use of proapoptotic BH3 or its mimetics because of the lack of specificity to tumor cells, possibly prompting to greater toxicity to normal cells. Inducing an imbalance in favor of cell death by raising the levels of the proapoptotic BH3 peptide, is an interesting strategy, especially in cells with normal levels of the antiapoptotic BCL-2 proteins, which is the case of cells of tumor vasculature.In the present study, we produced three chimerical recombinant proteins based on the core of the ES fused with the BH3 domains of the proapoptotic proteins BAK and BAX as a means to target these proteins. Such proteins display enhanced proapoptotic properties toward the tumor endothelium, avoiding damage to normal tissues. In addition, we determined if ES and ES-BAX interact with members of the BCL-2 family in endothelial cell lysates.  相似文献   

5.
6.
Ovarian cancer has a high mortality rate because there are few symptoms in early disease development. The incidence of ovarian cancer increases in women after menopause. Understanding early events in this disease can best be achieved by using animal models. Therefore, the objective of this study was to develop and track the onset of ovarian tumorigenesis in mice mimicking characteristics of postmenopausal epithelial cancer in women. Female B6C3F1 mice (age, 28 d) received 4-vinylcyclohexene diepoxide (VCD, 160 mg/kg IV daily for 20 d) to cause ovarian failure. Four months after VCD treatment, via surgical intervention, each mouse received a single injection of 7,12-dimethylbenz[a]anthracene (DMBA) or vehicle control (sesame oil) under the bursa of the right ovary to cause ovarian neoplasms. The experimental groups were untreated controls (Con–Con), DMBA-treatment only (Con–DMBA), VCD treatment only (VCD–Con), and VCD+DMBA-treated (VCD+DMBA) mice. At 3, 5, 7, and 9 mo after DMBA injection, ovaries were collected for histologic and immunohistochemical evaluation. No tumors developed in Con–Con mice. All VCD-treated mice (with or without DMBA) exhibited ovarian failure. Mice that received both VCD and DMBA exhibited tumors at 3 mo (50%), 5 mo (14%), 7 mo (90%), and 9 mo (57%) after DMBA treatment; 31% of the tumors were epithelial in origin. Our findings confirm that inducing ovarian tumors in mice by chemical means is an effective method for studying early stages of tumor development that may be relevant to epithelial ovarian cancers that arise in postmenopausal women.Abbreviations: DMBA, 7,12-dimethylbenz[a]anthracene; VCD, 4-vinylcyclohexene diepoxideOvarian cancer, the most deadly female reproductive malignancy, has a high mortality rate because high-grade cancers are thought to metastasize early prior to the development of symptoms in early stages of disease.4,27,28 The risk of contracting ovarian cancer over a lifetime is about 1 in 70, so it is a relatively rare cancer.28 Although more than 20 types of ovarian malignancies exist, about 90% of human ovarian cancers are epithelial in origin.28 Most cases are diagnosed at stages when the disease has metastasized outside the ovary, hindering efforts to treat or cure the disease. In addition, few reliable detection methods exist for early diagnosis of this disease. The incidence of ovarian cancer increases 8- to 10-fold among women in the peri- to postmenopausal period when compared with younger women.28 The generation of animal models of ovarian cancer has been attempted for decades. These models have included whole-body irradiation,5-7 chemical induction,13,15,17,21 genetic manipulation,18,25 and xenograph development.9,23 It was observed as early as 1936 that the removal of all follicles from a mouse ovary was followed by the appearance of benign tubular adenomas in the residual ovarian tissue.6,7,21,27 These adenomas appear to originate at the surface epithelium and proceed to invaginate and spread throughout the ovary.As women transition from peri- to postmenopause, circulating levels of estrogen and progesterone decrease, and the relative ratio of estrogens to androgens decreases in response to the decline of estrogen. In addition, gonadotropin (follicle stimulating hormone, luteinizing hormone) levels rise due to loss of negative feedback on the anterior pituitary and, thereafter, remain elevated.26 One theory of ovarian carcinogenesis proposes that increased circulating gonadotropin levels after menopause contribute to the development of ovarian epithelial cancers by stimulating surface epithelium proliferation.18 Women who have undergone a natural progression to menopause have lost ovarian function but retain residual ovarian tissue. Therefore, because ovarian cancers in women arise more frequently after than before menopause, models developed in animals that have undergone ovarian failure and retain residual ovarian tissue likely most closely resemble the disease in postmenopausal women.Repeated daily dosing of mice with the ovotoxic chemical 4-vinylcyclohexene diepoxide (VCD) results in a gradual onset of ovarian failure.24 Because VCD selectively targets primordial and primary follicles,22 larger follicles remain and develop toward ovulation.8 With the depletion of primordial and primary follicles, recruitment into the larger follicle pool eventually ceases, and a gradual onset of ovarian failure results. In VCD-treated mice, estrogen and progesterone concentrations decline and follicle-stimulating hormone levels rise after follicle depletion, similar to the scenario in postmenopausal women.19 A recent mouse model that combined virally induced changes in genes within the ovary and treatment with VCD resulted in ovarian failure along with induction of tumors characterized as undifferentiated tumors with mixed epithelial and stromal components along with some features of sex cord stromal tumors.18In a previous study, female Fisher 344 rats with VCD-induced ovarian failure developed ovarian tumors after treatment with 7, 12-dimethylbenz[a]anthracene (DMBA).11 Specifically, 57% of the VCD+DMBA-treated rats developed ovarian tumors within 5 months after DMBA treatment. However, the tumors were all classified as Sertoli–Leydig cell type lesions, which are rare ovarian neoplasms in women and often much less aggressive than are their epithelial counterpart.27,28 In another study,3 female B6C3F1 mice were treated in the same way as in the Fisher 344 rat study.9 Similarly, all tumors that developed within 5 mo in treated mice (28%) were also Sertoli–Leydig cell type masses. Therefore, the present study was undertaken in B6C3F1 mice to observe and classify DMBA-induced ovarian tumor development at later time points (7 and 9 mo after DMBA exposure) to determine whether epithelial tumors would develop and, if so, when.  相似文献   

7.
8.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

9.
10.
11.
12.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

13.
Young rats treated daily with intraperitoneal 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial follicles, resulting in gradual ovarian failure resembling the menopausal transition in women. To determine whether VCD has similar effects on ovaries of older rats, adult and peripubertal Sprague–Dawley rats were injected intraperitoneally daily for 30 d with vehicle or VCD at 40 or 80 mg/kg. Body weight, food intake, complete blood counts, and markers of liver injury and renal function were measured during VCD treatment. Complete gross necropsy and microscopic observations were performed on day 31, and ovarian follicles were counted. At 80 mg/kg, VCD destroyed primordial and primary follicles to a similar extent in both adult and peripubertal animals, although adult rats likely started with fewer follicles and therefore approached follicle depletion. Treatment with VCD did not affect body weight, but food intake was reduced in both adult and peripubertal rats treated with 80 mg/kg VCD. Adult rats treated with 80 mg/kg VCD had neutrophilia and increased BUN and creatinine; in addition, 4 of these rats were euthanized on days 25 or 26 due to peritonitis. VCD treatment did not increase alanine aminotransferase levels, a marker of liver injury, although the 80-mg/kg dose increased liver weights. In conclusion, VCD effectively destroys small preantral follicles in adult Sprague–Dawley rats, making them a suitable model of the menopausal transition of women. However, because adult rats were more sensitive to the irritant properties of VCD, the use of a lower dose should be considered.Abbreviations: VCD, 4-vinylcyclohexene diepoxideStudies attempting to model the human menopause have relied heavily on using animals from which the ovaries have been removed surgically (ovariectomy). This approach has important limitations because women who enter natural menopause still have ovaries, which continue to produce hormones. Therefore, studies using ovariectomized animals cannot model the hormonal changes associated with the menopausal transition and postmenopausal period. However, rodent models of the menopausal transition and menopause that more closely mimic those of women have recently been developed.32,33,36 Mice or rats treated with daily intraperitoneal injections of the chemical 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial and primary follicles.25 This treatment results in a gradual onset of ovarian failure because remaining larger follicles continue to develop and then ovulate or undergo atresia until they are depleted.36 These studies also demonstrate that the length of time to ovarian failure is dependent on VCD dose and duration of treatment.33,37 Moreover, in VCD-treated mice, the resulting follicle-depleted, stroma-intact ovary retains the ability to produce androgens.36 Therefore, taken together, these characteristics indicate that VCD-treated animals could be used to model the menopausal transition of women and enable research on diseases affecting women postmenopausally.The ability of VCD to destroy preantral follicles in rats by repeated dosing has been well documented.16,23,24,37 However, to our knowledge, all of the VCD studies using rats that have been published to date have used peripubertal or young (28 to 58 d) Fisher 344 rats. Although younger animals have been useful in separating the effect of age from the effect of hormonal changes associated with VCD-induced ovarian failure,22,27,32,37 the use of older rodents may provide a more appropriate model for studying the combined effects of aging and hormonal aspects of menopause (for example, osteoporosis, cognitive decline, ovarian cancer).Both young and adult Sprague–Dawley rats have been used extensively to model menopausal effects on osteoporosis,3,4,13,38,49 brain and cognitive functioning,2,14,15,29,34 lipids and cardiovascular health,30,35,53 bladder health and incontinence,6,21,31 and breast cancer.8,18,43,44 These studies used ovariectomized Sprague–Dawley rats ranging in age from 42 to 210 d. The use of this chemically induced model of menopause would be enhanced by determining whether VCD affects Sprague–Dawley rats differently and whether VCD has deleterious effects on nonovarian tissues. Furthermore, although more than a dozen publications have reported that repeated VCD dosing does not adversely affect young rodents,19,32,33,36,56 similar data have not been reported for adult Sprague–Dawley rats. The purpose of this study was to determine whether VCD affects the ovaries of peripubertal (28 d) and adult Sprague–Dawley rats differently.  相似文献   

14.
15.
16.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

17.
Cdc25C (cell division cycle 25C) phosphatase triggers entry into mitosis in the cell cycle by dephosphorylating cyclin B-Cdk1. Cdc25C exhibits basal phosphatase activity during interphase and then becomes activated at the G2/M transition after hyperphosphorylation on multiple sites and dissociation from 14-3-3. Although the role of Cdc25C in mitosis has been extensively studied, its function in interphase remains elusive. Here, we show that during interphase Cdc25C suppresses apoptosis signal-regulating kinase 1 (ASK1), a member of mitogen-activated protein (MAP) kinase kinase kinase family that mediates apoptosis. Cdc25C phosphatase dephosphorylates phospho-Thr-838 in the activation loop of ASK1 in vitro and in interphase cells. In addition, knockdown of Cdc25C increases the activity of ASK1 and ASK1 downstream targets in interphase cells, and overexpression of Cdc25C inhibits ASK1-mediated apoptosis, suggesting that Cdc25C binds to and negatively regulates ASK1. Furthermore, we showed that ASK1 kinase activity correlated with Cdc25C activation during mitotic arrest and enhanced ASK1 activity in the presence of activated Cdc25C resulted from the weak association between ASK1 and Cdc25C. In cells synchronized in mitosis following nocodazole treatment, phosphorylation of Thr-838 in the activation loop of ASK1 increased. Compared with hypophosphorylated Cdc25C, which exhibited basal phosphatase activity in interphase, hyperphosphorylated Cdc25C exhibited enhanced phosphatase activity during mitotic arrest, but had significantly reduced affinity to ASK1, suggesting that enhanced ASK1 activity in mitosis was due to reduced binding of hyperphosphorylated Cdc25C to ASK1. These findings suggest that Cdc25C negatively regulates proapoptotic ASK1 in a cell cycle-dependent manner and may play a role in G2/M checkpoint-mediated apoptosis.Cell division cycle 25 (Cdc25) phosphatases are dual-specificity phosphatases involved in cell cycle regulation. By removing inhibitory phosphate groups from phospho-Thr and phospho-Tyr residues of cyclin-dependent kinases (CDKs),1 Cdc25 proteins regulate cell cycle progression in S phase and mitosis. In mammals, three isoforms of Cdc25 phosphatases have been reported: Cdc25A, which controls the G1/S transition;2, 3 Cdc25B, which is a mitotic starter;4 and Cdc25C, which controls the G2/M phase.5 Overexpression of Cdc25 phosphatases is frequently associated with various cancers.6 Upon exposure to DNA-damaging reagents like UV radiation or free oxygen radicals, Cdc25 phosphatases are key targets of the checkpoint machinery, resulting in cell cycle arrest and apoptosis. The 14-3-3 proteins bind to phosphorylated Ser-216 of Cdc25C and induce Cdc25C export from the nucleus during interphase in response to DNA damage,7, 8 but they have no apparent effect on Cdc25C phosphatase activity.9, 10 In addition, hyperphosphorylation of Cdc25C correlates to its enhanced phosphatase activity.11 Most studies with Cdc25C have focused on its role in mitotic progression. However, the role of Cdc25C is not clear when it is sequestered in the cytoplasm by binding to 14-3-3.Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAPKKK5), is a ubiquitously expressed enzyme with a molecular weight of 170 kDa. The kinase activity of ASK1 is stimulated by various cellular stresses, such as H2O2,12, 13 tumor necrosis factor-α (TNF-α),14 Fas ligand,15 serum withdrawal,13 and ER stress.16 Stimulated ASK1 phosphorylates and activates downstream MAP kinase kinases (MKKs) involved in c-Jun N-terminal kinase (JNK) and p38 pathways.17, 18, 19 Phosphorylation and activation of ASK1 can induce apoptosis, differentiation, or other cellular responses, depending on the cell type. ASK1 is regulated either positively or negatively depending on its binding proteins.12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25ASK1 is regulated by phosphorylation at several Ser/Thr/Tyr residues. Phosphorylation at Thr-838 leads to activation of ASK1, whereas phosphorylation at Ser-83, Ser-967, or Ser-1034 inactivates ASK1.24, 26, 27, 28 ASK1 is basally phosphorylated at Ser-967 by an unidentified kinase, and 14-3-3 binds to this site to inhibit ASK1.24 Phosphorylation at Ser-83 is known to be catalyzed by Akt or PIM1.27, 29 Oligomerization-dependent autophosphorylation at Thr-838, which is located in the activation loop of the kinase domain, is essential for ASK1 activation.14, 18, 30 Phosphorylation at Tyr-718 by JAK2 induces ASK1 degradation.31 Several phosphatases that dephosphorylate some of these sites have been identified. Serine/threonine protein phosphatase type 5 (PP5) and PP2C dephosphorylate phosphorylated (p)-Thr-838,28, 32 whereas PP2A and SHP2 dephosphorylate p-Ser-967 and p-Tyr-718, respectively.31, 33 Little is known about the kinase or phosphatase that regulates phosphorylation at Ser-1034. Although ASK1 phosphorylation is known to be involved in the regulation of apoptosis, only a few reports show that ASK1 phosphorylation or activity is dependent on the cell cycle.21, 34In this study, we examined the functional relationship between Cdc25C and ASK1 and identified a novel function of Cdc25C phosphatase that can dephosphorylate and inhibit ASK1 in interphase but not in mitosis. Furthermore, we demonstrated that Cdc25C phosphorylation status plays a critical role in the interaction with and the activity of ASK1. These results reveal a novel regulatory function of Cdc25C in the ASK1-mediated apoptosis signaling pathway.  相似文献   

18.
19.
20.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号