首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
<正>蛋糕不变,份额有变长江中下游地区地势低平,湖泊密布,是我国淡水湖泊分布最集中的地区。这些美丽的湖泊犹如珍珠般点缀在长江两岸。沧海桑田,江湖格局演变至今,仅有洞庭湖、鄱阳湖及石臼湖等少数几个湖泊依旧保持着与长江自然连通状态。长期演变形成的长江与通江湖泊之间特殊的交互作用在维系长江中下游防洪、水资源、水环境和水生态安全上具有重要的意义。  相似文献   

2.
退田还湖对洞庭湖生态环境的影响   总被引:5,自引:1,他引:4  
在总结围湖造田带来的生态环境影响的基础上,就退田还湖工程对洞庭湖生态环境的影响进行了分析,获得了退田还湖能扩大洞庭湖的蓄洪能力、改善湖泊局地气候和水质、有利于生物多样性保护和水资源的可持续利用,同时指出了移民集中建镇安置可能带来的水质污染风险,并提出了湖泊生态环境保护的建议与对策。  相似文献   

3.
黄维  王为东 《生态学报》2016,36(20):6345-6352
长江三峡工程建成运行后,其下游第一个大型通江湖泊——洞庭湖的水文、水质以及湿地环境等均发生了很大变化。三峡工程已经开始影响到洞庭湖的泥沙淤积、水位波动、水质以及植被演替等。以三峡水库调度运行方案、河湖交互作用和洞庭湖湿地植被分布格局为基础,从长江三峡工程对洞庭湖水文、水质以及湿地植被演替等方面综述了三峡工程对洞庭湖湿地的综合影响。三峡工程减缓了长江输入洞庭湖泥沙的淤积速率,对短期内增加洞庭湖区调蓄空间、延长洞庭湖寿命有利。总体上减少了洞庭湖上游的来水量,改变了洞庭湖原来的水位/量变化规律。给洞庭湖水环境质量造成了直接或间接的影响,对其水质改变尚存一定争议,但至少在局部地区加剧了污染。水位变化和泥沙淤积趋缓协同改变了洞庭湖湿地原有植被演替方式,改以慢速方式演替,即群落演替的主要模式为:水生植物—虉草或苔草—芦苇—木本植物。展望了今后的研究趋势与方向,为三峡工程与洞庭湖关系的进一步研究提供参考。  相似文献   

4.
菜子湖位于“东亚-澳大利西亚”候鸟迁徙路线上, 为越冬水鸟提供重要的栖息地。“引江济淮”工程拟通过菜子湖调引长江水, 向巢湖和淮河输送水资源。工程实施后, 菜子湖冬季水位将明显抬升, 改变原有自然节律, 导致湿地景观格局发生重大变化, 可能对在此越冬的水鸟产生重要影响。结合遥感影像、水位季节动态及野外水鸟调查, 分析不同水位时各类湿地景观斑块的分布及面积, 预测工程实施后湖泊水位变化对越冬水鸟栖息地的影响。2016年和2017年两次同步调查共记录到水鸟49450只, 隶属于6目12科42种。菜子湖水位和湿地景观格局具有明显的季节动态, 10月份水位开始下降, 暴露多种湿地景观斑块, 泥滩和草滩面积随水位下降而增加, 为多种越冬水鸟提供觅食地。泥滩和草滩的分布具有空间异质性, 越冬水鸟的空间分布与此相适应。“引江济淮”工程实施后, 菜子湖冬季水位较高, 导致大量泥滩和草滩不能暴露, 越冬水鸟栖息地丧失严重, 如东方白鹳(Ciconia boyciana)(EN)、白鹤(Grus leucogeranus) (CR)、白头鹤(Grus monacha)(UV)和鸿雁(Anser cygnoides)(UV)等濒危物种。为降低工程对越冬水鸟栖息地的影响, 建议工程实施后菜子湖越冬期水位应不超过11.5米。  相似文献   

5.
<正>鄱阳湖位于长江中下游南岸、江西省北部,是我国最大的淡水湖泊,也是当前仅存的保持与长江干流自然连通的两个大型湖泊之一。鄱阳湖具有"高水是湖,低水是河"的特点,年内水位变幅很大:汛期水位上升,湖面陡增,水面辽阔;枯期水位下降,洲滩裸露,水流归槽,湖面仅剩几条蜿蜒曲折的水道,呈现"枯水一线,洪水一片"的自然景观。随着鄱阳湖的水位变化,  相似文献   

6.
基于水质管理目标的博斯腾湖生态水位研究   总被引:3,自引:0,他引:3  
人类开发活动导致湖泊生态功能严重退化,研究湖泊生态水位对于维持湖泊生态系统健康意义重大。针对博斯腾湖化学需氧量(COD)浓度较高的水环境现状,分析博斯腾湖水位和COD浓度关系,研究提出基于水质管理目标的生态水位,以期为博斯腾湖水资源、水环境管理提供参考。结果表明,博斯腾湖水位与水体COD浓度显著负相关,但由于COD浓度空间差异较大以及影响因素不唯一,水位与COD浓度两者之间曲线估计结果不理想。为实现博斯腾湖COD浓度小于20 mg/L的水质管理目标,引入累计水位概念进行统计分析得到两个特征水位:所有COD浓度大于等于20 mg/L的数据对应水位的平均值为1046.02 m,该水位在历史丰水期水位的频率为60.83%,可作为最小生态水位;所有COD`浓度小于等于20 mg/L的数据对应水位的平均值为1046.4 m,该水位在历史丰水期水位的频率为44.70%,可作为适宜生态水位。适宜生态水位1046.4 m与已有研究成果基本相符,博斯腾湖在1046.4 m时既有利于水质管理,也可保障湖泊整体生态系统健康。  相似文献   

7.
长江中下游不同地理种群鳜遗传结构研究   总被引:1,自引:0,他引:1  
以长江、通江湖泊(洞庭湖、鄱阳湖)、陆封型湖泊(牛山湖、涨度湖、汤逊湖、肖四海湖)不同水体鳜为研究材料,利用微卫星遗传标记对其种群遗传结构进行分析,结果表明:由期望杂合度(He)和多态信息含量指数(PIC)检测的遗传多样性由大到小的顺序为:长江、通江湖泊群体>无放流陆封型湖泊群体>放流的陆封型湖泊群体,并且发现一些稀有等位基因位点在陆封型湖泊鳜群体中消失;由杂合度检验可以看出,所有群体在绝大多数位点都呈现杂合过剩现象,经过哈代-温伯格平衡检验,显示均显著偏离哈代-温伯格平衡(Pst为0.2727,显示群体间已发生较大遗传分化,其变异主要体现在通江湖泊和陆封型湖泊之间,同时由于陆封型湖泊之间放流管理模式的不同,亦会产生中度分化。研究结果表明,江湖阻隔是造成定居性鱼类鳜种群间遗传分化的重要原因之一。    相似文献   

8.
为揭示长江中下游通江湖泊浮游植物群落结构特征及其与水环境因子的关系,于2017年9月(秋季),对安徽3座典型通江湖泊龙感湖、大官湖、黄湖浮游植物种类组成、细胞丰度、生物量等进行调查.结果表明:共检出浮游植物7门50属共107种(包括变种),主要隶属于绿藻门(Chlorophyta)和硅藻门(Bacillariophyt...  相似文献   

9.
分别于2012—2013、2013—2014年度越冬期候鸟越冬前(10月份)与越冬后(4月份)采用样方法调查沙湖沉水植物冬芽的种类、密度及生物量,分析不同水位条件的2个年度鄱阳湖碟形子湖沉水植物冬芽的分布及其对食块茎水鸟食物贡献的差异性,探讨越冬水鸟取食与水位变化对沉水植物冬芽分布的影响。结果表明:刺苦草(Vallisneria spinulosa)和罗氏轮叶黑藻(Hydrilla verticillata var.rosburghii)2种沉水植物的冬芽同域分布。2013年10月2种植物冬芽的密度与生物量均显著低于2012年同期,主要原因是鄱阳湖水位年际间变化剧烈,并对水质有显著影响:与2012年相比,2013年丰水期(4—9月)沙湖与主湖区连通的时间和日平均水深显著减小,但水体浊度显著增加,不利于沉水植物生长发育。2012—2013年度越冬水鸟迁出后2种冬芽的密度和生物量均明显下降,而2013—2014年度越冬期水鸟迁出后与迁入前相比两种植物冬芽的密度和生物量均无显著变化,很可能与食块茎水鸟的取食活动和高水位对食物可利用性的负面影响有密切关系。湖泊剧烈的水位变化导致越冬水鸟的食源具有年际波动的特征,而食块茎水鸟对鄱阳湖子湖的食物利用率受越冬季冬芽丰富度和食物可及性(accessibility)的共同影响。研究结果对鄱阳湖乃至长江中下游流域沉水植被恢复、越冬水鸟保护以及生态系统功能评估具有指导意义。  相似文献   

10.
石臼湖原生动物种群分布及其同质化   总被引:1,自引:0,他引:1  
石臼湖地处长江中下游,是国内为数不多的通江淡水湖。为探讨湖泊与入湖支流不同生境中原生动物种群结构及其相似性,于2012年平水期和枯水期分别对石臼湖及其周边入湖支流进行原生动物调查,研究河流和湖泊区域原生动物的种类组成及其季节变化,同时与同一地区的相邻湖泊固城湖作对比,通过计算相似性指数,探讨原生动物对生境同质化的响应。结果表明:调查共采集到原生动物57种,平水期种类多于枯水期;石臼湖河流区各站点原生动物相似性指数在Ⅰ~Ⅲ级之间,为完全不同-轻度相似;湖区站点相似性指数在Ⅱ~Ⅳ之间,为极不相似-中度相似;河流区种类季节之间的相似度极低(0.050~0.267),而湖泊区种类季节之间处于中等相似水平(0.250~0.375),说明河流区原生动物种类的季节变化较湖泊区明显,生物组成的异质性也高于湖泊;原生动物分布对水质有很好的响应关系,氮磷元素在影响原生动物种类组成和分布中起了主要作用;通过石臼湖与固城湖及长江中下游其他湖泊的对比分析,表明在一定范围内,随着生境尺度的增加,生境的同质化会提高生物同质化水平,但超过景观尺度,原生动物地域性特征逐渐显现,即使生境同质,其生物也未必同质;且随着距离的增加,不同区域的生物相似性呈降低的趋势。  相似文献   

11.
基于1950s以来的长江中下游湖泊鱼类调查数据,分析通江湖泊与阻隔湖泊的鱼类分类多样性差异,以及通江和阻隔湖泊鱼类分类多样性的时间序列变化,探讨江湖阻隔对鱼类多样性的影响。结果显示,阻隔湖泊鱼类物种数、平均分类差异指数(Δ+)和分类差异变异指数(Λ+)平均值分别为48.47±14.64、74.02±3.09和736.89±33.80;通江湖泊为76.22±14.40、78.31±0.98和697.31±25.53。阻隔湖泊物种数和Δ+值显著低于通江湖泊(P<0.001),而阻隔湖泊Λ+值显著高于通江湖泊(P=0.002),表明阻隔湖泊物种间亲缘关系更近,均匀度下降,即物种分类单元减少,且集中分布于某几个分类阶元,稳定性变差。典型通江与阻隔湖泊鱼类群落分类多样性的时间变化分析发现,两种类型湖泊的鱼类物种数和Δ+值均随时间推移整体呈现下降趋势,Λ+值整体呈现升高趋势;并且阻隔湖泊的Λ+值随阻隔时间增加而大幅上升,Δ+和Λ+...  相似文献   

12.
1. Lake phytoplankton community structure may be influenced by both internal factors (predation, competition, resource constraints) and external ones, such as dispersal of materials and cells between connected habitats. However, little is known about the importance of cell dispersal for phytoplankton community structure in lakes. 2. We investigated the abundance and dispersal of phytoplankton cells between connected rivers and lakes, and analysed whether similarities in phytoplankton community composition between rivers and lakes were primarily related to cell import rates or to characteristics of the local habitat. We focused on lakes along a gradient of theoretical water retention times (TWRT). Two data sets from Swedish lakes were used; a seasonal study of two connected boreal forest lakes, differing in TWRT, and a multi‐lake study of 13 lakes with a continuous range of TWRTs. 3. Phytoplankton cells were transported and dispersed in all investigated rivers. In the seasonal study, cell import rates and similarities in phytoplankton community composition between the lake and its inlet(s) were much higher in the lake with a shorter TWRT. Phytoplankton community structure in different habitats was associated with total organic carbon (TOC). This indicates that local habitat characteristics may be important in determining lake phytoplankton community composition, even in the presence of substantial cell import. 4. The multi‐lake study also showed a negative relationship between TWRT and similarities in phytoplankton community composition between inlets and lakes. Moreover, similarity in community structure was related to both cell import rates from inlet to lake and differences in habitat characteristics between inlet and lake. However, the variable most strongly correlated with community structure was TOC, indicating that species sorting rather than a mass effect was the most important mechanism underlying the correlation between community structure and retention time. 5. Overall, our data suggest that local habitat characteristics may play a key role in determining community similarity in this set of lakes covering a large range of habitat connectedness. Due to the strong co‐variations between cell dispersal and TOC, it was hard to unequivocally disentangle the different mechanisms; hence, there is a need for further studies of the role of dispersal for phytoplankton community structures.  相似文献   

13.
Ecological water quality problems are frequently connected to increment of phytoplankton productivity and overdominance of some phytoplankton species. Metrics that show monotonously increasing or decreasing tendencies along stressor gradients is recommended for ecological state assessment. Diversity metrics are influenced by various physical disturbances and show high within-year variability; thus, there is no agreement on the usefulness of these metrics as state indicators.To test the usefulness of phytoplankton diversity in ecological state assessment we investigated the productivity–diversity relationships for lakes and rivers in the Carpathian Basin (Hungary). We demonstrated that the shape of productivity–diversity relationship depends on the investigated water body type. Regarding lakes, hump-shaped relationship was found for all computed metrics. Parallel with the increase in phytoplankton productivity values, diversity metrics showed monotonously increasing tendencies in rhithral and decreasing tendencies in large potamal rivers. We found no systematic relationship in the case of small lowland rivers.Changes of diversity metrics calculated for species and functional groups showed similar tendencies within the types, only the slopes of regression lines differ each other.The use of diversity metrics as ecological state indicators should be restricted to water body types where diversity decreases or increases monotonously with phytoplankton biomass. Regarding the lakes the use of diversity metrics is not recommended for ecological state assessment. In rhithral and large potamal river assessment, application of diversity metrics should be strongly considered. We demonstrated that diversity metrics can be useful components of multimetric indices proposed to use by the Water Framework Directive.  相似文献   

14.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

15.
Physical and chemical factors were studied in 34 lentic waterbodies distributed along a steep altitudinal gradient ranging from tropical (77 m) to high alpine (up to 4,980 m) environments in Nepal. Bicarbonate and calcium were dominant among anions and cations, respectively, reflecting a strong influence of carbonate weathering and watershed area, rather than altitudinal climate. The relative patterns of dominant ions were similar among lakes in all altitudinal regions, although total concentrations increased with decreasing altitude. Total suspended solids were relatively high in the study lakes, as is also typical of rivers in the Ganges watershed. Suspended solids had a greater influence on water transparency than did algal biomass in the study lakes. In general, high‐altitude waterbodies were oligotrophic, while those at low altitude were eutrophic. The productivity of high‐altitude study lakes appeared to be limited by both available phosphorus and nitrogen, while lowland ones were nitrogen‐limited. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The Yangtze (Changjiang) river-floodplain is one of the most important ecosystems in China and the world, but is seriously threatened by multiple stresses. Thus, it is crucial and urgent to rehabilitate and conserve the river-floodplain. This paper reviews ecological studies conducted on the Yangtze river-floodplain, and presents suggestions for conservation and rehabilitation. First, basic concepts and research advances of riverscape and hydrological connectivity are introduced. Second, the history and current status of the Yangtze River system are summarized. Before 23 Ma, the Yangtze River cut through the Three Gorges, forming the river much like the modern one. Numerous rivers, streams, lakes (the total area 15770 km2 at present) and wetlands are distributed in the mid-lower Yangtze river-flood-plain. Such a river-lake complex ecosystem holds a unique and diverse biota, and is the most important fishery area of China. Third, main threats to the Yangtze river-floodplain ecosystem are identified, i.e., a) habitat loss, including river channelization, sharp shrinkage of lake area (ca. 10000 km2 since the 1950s), degradation of lakeshore zones and sand over-mining; b) alternations of hydrological regimes, including construction of ca. 47000 reservoirs and disconnection of most lakes from the mainstem; c) water pollution, including eutrophication, heavy metals, organic pollutants and microplastic; d) overexploitation of biological resources, including overfishing and intensive pen culture. Fourth, effects of river-lake disconnection on lake ecosystems are summarized. It was found that a) disconnection is one of the main causes of lake eutrophication; b) species diversity, biomass, production of macrophytes and macrobenthos reach maxima at some levels of intermediate river connectivity; c) disconnection greatly reduces fish species richness of each habitat guild, and natural fish larvae is severely depleted; d) disconnection simplifies macroinvertebrate food web structure, and trophic basis is more heavily relied on detritus in disconnected lakes. Last, conservation strategies are proposed. Since the Yangtze river-floodplain is a huge integrated system, the biodiversity conservation must be conducted on the whole basin scale. By establishing species-area models of fishes, the minimum protected area of Yangtze-connected lakes is estimated to be ca. 14400 km2. It means that at least 8900 km2 of disconnected lakes should be reconnected with the Yangtze mainstem, and ecohydrological operation of dams and sluices is the feasible approach. Based upon our studies on environmental flow requirements, the following measures are suggested: a) lower water levels during spring to improve germination of macrophytes, and control rising rates of water levels during spring-summer to ensure development of macrophytes; b) open sluice gates to restore migration routes for juveniles migrating into lakes during April-September, and for adults migrating back to the Yangtze mainstem during November-December. © 2019, Institute of Hydrobiology, Chinese Academy of Sciences. All rights reserved.  相似文献   

17.
上海市不同区县中小河道氮磷污染特征   总被引:7,自引:4,他引:3  
山鹰  张玮  李典宝  王丽卿 《生态学报》2015,35(15):5239-5247
以上海11个区县,共19条河道、65个点位进行1a的氮磷污染情况调查。结果表明:(1)上海河道为不完全感潮型河网水系。潮汐、降雨对氮磷污染物的分布影响具有时间差异性。(2)上海河道区县之间氮磷污染差异大(P0.05)。氮磷浓度从中心城区河道依次向外呈现"圆环状"稀释扩散趋势。黄浦江以南河道水质好于黄浦江以北河道;近江苏的河道总体氮磷浓度水平高于近浙江的河道(上海东南部)(P0.05)。水体中污染物浓度、扩散、降解与人为扰动和城镇化程度密切相关。(3)聚类分析(Cluster Analysis,CA)结果显示上海市河道污染水平在点位之间区别不大,而多维尺度分析(Multidimensional Scaling,MDS)显示上海市河道污染水平在点位之间具有一定差异,并与水质评价结果一致。(4)经生态修复后的河道水质优于修复前(P0.05),说明上海市人工水生态修复措施和生态型驳岸建设对改善河道水质有潜在价值。  相似文献   

18.
摇蚊幼虫广泛分布于各种类型的水体底部或水生植物间。由于种类多,且多数种类的个体数量大而成为淡水水体中主要的一类动物。摇蚊幼虫是重要的水生生物资源,对维持和促进渔业发展,关系重大。又因其区系组成与环境性能有密切关系,其群落组成和变化能反映环境质量的变动情况,已被广泛应用于监测和评价水质。世界各国,特别是欧美和日本,对摇蚊科昆虫的研究十分重视。我国该领域的研究起步较晚,截止1986年年底,仅报道176种m。近几年我们对辽宁省各河流及其他类  相似文献   

19.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   

20.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号