首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(5):1274-1282
Antibody engineering to enhance thermostability may enable further application and ease of use of antibodies across a number of different areas. A modified human IgG framework has been developed through a combination of engineering approaches, which can be used to stabilize antibodies of diverse specificity. This is achieved through a combination of complementarity-determining region (CDR)-grafting onto the stable framework, mammalian cell display and in vitro somatic hypermutation (SHM). This approach allows both stabilization and maturation to affinities beyond those of the original antibody, as shown by the stabilization of an anti-HA33 antibody by approximately 10°C and affinity maturation of approximately 300-fold over the original antibody. Specificities of 10 antibodies of diverse origin were successfully transferred to the stable framework through CDR-grafting, with 8 of these successfully stabilized, including the therapeutic antibodies adalimumab, stabilized by 9.9°C, denosumab, stabilized by 7°C, cetuximab stabilized by 6.9°C and to a lesser extent trastuzumab stabilized by 0.8°C. This data suggests that this approach may be broadly useful for improving the biophysical characteristics of antibodies across a number of applications.  相似文献   

2.
《Cell》2023,186(10):2193-2207.e19
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

3.
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   

4.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

5.
The germline precursor to the ferrochelatase antibody 7G12 was found to bind the polyether jeffamine in addition to its cognate hapten N-methylmesoporphyrin. A comparison of the X-ray crystal structures of the ligand-free germline Fab and its complex with either hapten or jeffamine reveals that the germline antibody undergoes significant conformational changes upon the binding of these two structurally distinct ligands, which lead to increased antibody-ligand complementarity. The five somatic mutations introduced during affinity maturation lead to enhanced binding affinity for hapten and a loss in affinity for jeffamine. Moreover, a comparison of the crystal structures of the germline and affinity-matured antibodies reveals that somatic mutations not only fix the optimal binding site conformation for the hapten, but also introduce interactions that interfere with the binding of non-hapten molecules. The structural plasticity of this germline antibody and the structural effects of the somatic mutations that result in enhanced affinity and specificity for hapten likely represent general mechanisms used by the immune response, and perhaps primitive proteins, to evolve high affinity, selective receptors for so many distinct chemical structures.  相似文献   

6.
单克隆抗体因其与抗原结合具有高度特异性与强亲和力,已成为抗体药物研发的主要类型。但随着天然单克隆抗体的深入研究,它的诸多缺陷也浮出水面,如与抗原结合次数有限、带来非预期的抗体清除效应和抗原累积效应。人们不再局限于天然抗体的筛选,而是想通过改造提升抗体药物的药效。近年来,一类新型再循环抗体的问世,很好地解决了天然单克隆抗体发展的瓶颈。再循环抗体可以在胞外结合抗原,在细胞内与抗原解离,使抗体结合抗原次数最大化,减少抗原介导的抗体清除效应和抗体介导的抗原累积效应,并且再循环抗体可以通过进一步的Fc改造来加强与Fc受体的亲和力。文中综述了再循环抗体的研究进展,包括其特点、改造方法及展望。  相似文献   

7.
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.  相似文献   

8.
9.
The basic procedure of immunoaffinity chromatography (IAC) is described. The insoluble support matrices available for IAC and their activation chemistries, including some of the most recently introduced, are reviewed. Means of selecting the most appropriate monoclonal antibody (MAb) are described, although an empirical approach is still required for the final choice of antibody. Precise methods of runing IAC columns are surveyed including the binding, washing, and elution stages, although no precise recommendations can be made particularly for the elution step since this is unique to a particular MAb and antigen. All IAC sorbents lose activity with time through a combination of MAb inactivation and ligand leakage. The relative importance of the two phenomena is discussed, and suggestions are made to minimize the problem along with an indication of the relative stabilities of a range of coupling chemistries. A sample of the proteins purified by IAC is given together with pointers to the future of the technique.  相似文献   

10.
An IgG1 monoclonal antibody (MAB) was isolated from hybridoma culture supernatant by affinity precipitation with an Eudragit S-100-based heterobifunctional ligand. Affinity binding was performed in a homogeneous aqueous phase at pH 7.5 followed by precipitation of the bound affinity complex by lowering the pH to 4.8. After two washing steps, elution of specifically bound MAB was achieved by incubating the precipitate with 0.1 M glycine.HCl pH 2.5. The influence of elution volume and time on the recovery of active MAB and the overall purification factor were studied. The best conditions enabled the recovery of 50.2% of active MAB with a purification factor of 6.2. A further dialysis against 50 mM Tris.HCl pH 8.0 increased the activity yield and the purification factor to 68.4% and 8.3, respectively. This result showed that part of the antibody activity loss during affinity precipitation was due to a reversible inactivation process, being easily recovered after a refining dialysis step.  相似文献   

11.
CD20 molecule, a phosphoprotein with 297 amino acids and four transmembrane domains, is a member of MS4A protein family. Anti-CD20 antibodies such as ofatumumab, which have been developed for cancer treatment and has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. Rational engineering methods can be applied with reasonable success to improve functional characteristics of antibodies. Considering the importance of this issue, we have used in silico modeling approach for the improvement of ofatumumab monoclonal antibody. Four mutated variants of ofatumumab were developed and expressed in Chinese hamster ovary (CHO) cells along with the unmodified antibody. Analysis of affinity of the purified antibodies with CD20 showed significant improvement in antigen-binding characteristics of one of the variants compared with the control antibody. This study represents the first step toward development of the second generation ofatumumab antibody with improved affinity.  相似文献   

12.
用基因重组人IL-6免疫Balb/c小鼠,采用小鼠杂交瘤技术,筛选克隆到分泌抗人重组IL-6单克隆抗体的杂交瘤细胞株,并对其中2H2、 1D2 和4B4瘤细胞株进行了鉴定.其抗体类别均为IgG,亚类分别为IgG1和IgG2a.用多种细胞因子和无关蛋白的鉴别试验结果证实它们均特异地识别rhIL-6.免疫转染结果显示,该单抗识别分子质量为21 ku的IL-6单一条带.IL-6单克隆抗体的亲和常数Kaff= 1.62×109 (mol/L)-1.  相似文献   

13.
Activated ras transforming genes have been described in a variety of neoplasms and encode 21,000-Dalton (p21) proteins with amino acid substitutions at positions 12, 13, and 61. In this report we describe a monoclonal antibody designated DWP that reacts specifically with synthetic dodecapeptides containing valine at position 12, to a lesser extent with peptides containing cysteine at position 12 and not with peptides containing glycine, arginine, serine, aspartic acid, glutamic acid or alanine at the same position. Western blot and immunoperoxidase studies showed that DWP specifically reacts with activated rasH or rasK proteins in NIH cells transformed by DNA from the human carcinoma cells that encode valine at position 12. DWP did not react with normal p21s encoding glycine at position 12, nor with activated p21s encoding aspartic acid, glutamic acid, arginine, serine, or cysteine at position 12. A survey of human tumor cell lines demonstrated that DWP reacted with the human bladder carcinoma cell line T24 but not with human tumor cell lines previously shown to contain other activating mutations at positions 12 or 61. DWP and perhaps additional antibodies that specifically react with alterations at positions 12 or 61 of the ras protein may be valuable in determining the presence and frequency of activated ras proteins in human malignancy.  相似文献   

14.
The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.  相似文献   

15.
《MABS-AUSTIN》2013,5(3):505-515
The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.  相似文献   

16.
A cell surface molecule of equine T lymphocytes was identified and characterized using a mouse monoclonal antibody, HT23A. The molecule was detected on all T cells but not on other cells in peripheral blood, with the possible exception of a small subpopulation (about 5%) of B cells, as assessed by indirect immunofluorescence and flow cytometry. HT23A labelled T cell areas of horse lymph nodes and spleen when used in an indirect immunoperoxidase assay on frozen sections. Macrophages and neutrophils were not labelled by the antibody nor were frozen sections of horse liver, kidney, or brain. HT23A precipitated a molecule of approximately 69 kDa from 125Iodine labelled horse lymphocytes.  相似文献   

17.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

18.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

19.
Recently monoclonal antibodies (mAbs) to swine red blood cells have been described. One of them (1AC11) was specific for the major swine glycoprotein with a molecular weight of 45 kDa and another mAb, 2G2, recognized the B a allele in the B system of swine blood groups. Immunoblotting experiments to characterize the mAb 2G2 indicated that it reacts with an antigen of 45 kDa, present on the aqueous phase, glycophorin fraction, of swine red blood cells with the B a allele and does not react with B bBb homozygous cells. The antigen recognized by 2G2 has the same characteristics as the major glycophorin recognized by 1AC11, so we can conclude that the B system of the swine blood group is on the major glycophorin of swine erythrocyte membranes.  相似文献   

20.
As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever-increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation-prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2 to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2 gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号