首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The persistence and replication of defined circular and linear plasmid DNA molecules microinjected into fertilized eggs of Xenopus laevis were analyzed. For all plasmids tested, a small fraction of microinjected circular molecules was replicated; however, the overall copy numbers of either free form I or form II molecules usually did not increase through blastulation. In contrast, extensive amplification of input DNA sequences was seen whenever the microinjected DNA was assembled into high molecular weight concatemers. Moreover, the appearance and subsequent replication of injected sequences in high molecular weight DNA were enhanced when linear (form III), rather than circular, molecules were microinjected. The injected form III DNA was rapidly converted into long linear concatemers. All possible orientations of monomeric molecules within the concatemers were observed although, on occasion, head-to-tail orientations were favored. Long linear concatemers were replicated very efficiently, irrespective of the sequence of the input DNA. Form I and form II DNA molecules were also formed in the embryo from microinjected form III DNA. A small fraction of these circular forms was replicated, although overall copy numbers did not increase significantly. Form III molecules that remained monomeric were not observed to be replicated at all within our limits of detection. In some batches of embryos, form I and form II DNA molecules were replicated to the extent that overall copy number increased. Even in these cases, however, the amplification of long linear concatemers of the input DNA sequences was more efficient.  相似文献   

2.
A complex form of bacteriophage T7 DNA, containing up to several hundred phage equivalents of DNA, arises during replication of T7. The complex was stable to treatment with ionic detergent, Pronase, and phenol. The complex form normally exists for only a short time, corresponding to the phase of rapid T7 DNA synthesis. It is then converted to shorter molecules, both concatemers and unit-size DNA. The complex was stable up to the temperature of denaturation of the bihelix. It consisted of a series of loops amanating from a dense central core, as shownby electron microscopy. The complex form is similar to the relaxed Escherichia coli folded chromosome ('nucleoid'). The loops contained an average of 0.7 to 0.8 phage equivalent of DNA. During infection by phage with an amber mutation in gene 3 (endonuclease), formation of the complex occurred normally, but its maturation to unit-size DNA blocked. Before treatment with phenol, the complex contained short fragments of newly replicated DNA. These were released as single-stranded pieces during phenol treatment. A pathway for T7 DNA replication is indicated in which the flow of material is from unit-size DNA to linear concatemers to the complex form, and then back to unit-size DNA by way of linear concatemers.  相似文献   

3.
We used pulsed-field gel electrophoresis, restriction fragment mapping, and fluorescence microscopy of individual DNA molecules to analyze the structure of chloroplast DNA (cpDNA) from shoots of ten to 14 day old maize seedlings. We find that most of the cpDNA is in linear and complex branched forms, with only 3-4% as circles. We find the ends of linear genomic monomers and head-to-tail (h-t) concatemers within inverted repeat sequences (IRs) near probable origins of replication, not at random sites as expected from broken circles. Our results predict two major and three minor populations of linear molecules, each with different ends and putative origins of replication. Our mapping data predict equimolar populations of h-t linear concatemeric molecules differing only in the relative orientation (inversion) of the single copy regions. We show how recombination during replication can produce h-t linear concatemers containing an inversion of single copy sequences that has for 20 years been attributed to recombinational flipping between IRs in a circular chromosome. We propose that replication is initiated predominantly on linear, not circular, DNA, producing multi-genomic branched chromosomes and that most replication involves strand invasion of internal regions by the ends of linear molecules, rather than the generally accepted D-loop-to-theta mechanism. We speculate that if the minor amount of cpDNA in circular form is useful to the plant, its contribution to chloroplast function does not depend on the circularity of these cpDNA molecules.  相似文献   

4.
We have verified, by identification of individual molecules in the electron microscope, that λ DNA concatemers are long linear molecules containing repeats of the mature phage DNA sequence. The molecules are not made up of whole multiples of the length of mature λ DNA and do not seem to contain specific start or end points. The concatemers, comprising about 20% of the molecular forms extracted late in infection, can be found in the absence of genetic recombination and in the presence or absence of maturation defects. It may be concluded that concatemers are normal intermediates in the late stage of λ replication.  相似文献   

5.
Backert S 《The EMBO journal》2002,21(12):3128-3136
The mitochondrial (mt) plasmid mp1 of Chenopodium album replicates by a rolling-circle (RC) mechanism initiated at two double-stranded replication origins (dso1 and dso2). Two-dimensional gel electrophoresis and electron microscopy of early mp1 replication intermediates revealed novel spots. Ribonucleotide (R)-loops were identified at dso1, which function as a precursor for the RCs in vivo and in vitro. Bacteriophage T4-like networks of highly branched mp1 concatemers with up to 20 monomer units were mapped and shown to be mainly formed by replicating, invading, recombining and resolving molecules. A new model is proposed in which concatemers were separated into single units by a "snap-back" mechanism and homologous recombination. dso1 is a recombination hotspot, with sequence homology to bacterial Xer recombination cores. mp1 is a unique eukaryotic plasmid that expresses features of phages like T4 and could serve as a model system for replication and maintenance of DNA concatemers.  相似文献   

6.
Herpes simplex virus-infected cells contain large concatemeric DNA molecules arising from replication of the viral genome. The large concatemers are cleaved to generate unit-length molecules terminating at both ends with the a sequence. We have used constructed defective virus vectors (amplicons) derived from herpes simplex virus to study the mechanism of cleavage of viral DNA concatemers and the packaging of viral DNA into nucleocapsids. These studies revealed that (i) a 248-base-pair a sequence contained the signal(s) required for cleavage-packaging, (ii) the cleavage of viral DNA concatemers was coupled to packaging, (iii) the a sequence contained the information required for its own amplification, and (iv) cleavage-packaging occurred by a novel process involving the amplification of the a sequence.  相似文献   

7.
Recombination-dependent concatemeric plasmid replication.   总被引:10,自引:0,他引:10       下载免费PDF全文
The replication of covalently closed circular supercoiled (form I) DNA in prokaryotes is generally controlled at the initiation level by a rate-limiting effector. Once initiated, replication proceeds via one of two possible modes (theta or sigma replication) which do not rely on functions involved in DNA repair and general recombination. Recently, a novel plasmid replication mode, leading to the accumulation of linear multigenome-length plasmid concatemers in both gram-positive and gram-negative bacteria, has been described. Unlike form I DNA replication, an intermediate recombination step is most probably involved in the initiation of concatemeric plasmid DNA replication. On the basis of structural and functional studies, we infer that recombination-dependent plasmid replication shares important features with phage late replication modes and, in several aspects, parallels the synthesis of plasmid concatemers in phage-infected cells. The characterization of the concatemeric plasmid replication mode has allowed new insights into the mechanisms of DNA replication and recombination in prokaryotes.  相似文献   

8.
Replication and recombination structures can be interconverted by branch-migration. Using this simple concept a novel mechanism is proposed for generating concatemers through an initial single-strand DNA invasion into a duplex. Only DNAs with terminal repeats can form concatemers, and Herpes Simplex Virus DNA replication is considered in detail. The model is more parsimonious than other models such as Watson's for concatemer formation.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) replication generates high-molecular-weight intermediates containing branched DNA and concatemers carrying adjacent genomes with inverted L components. We have studied replicative intermediates generated by (i) wild-type HSV-1; (ii) 5dl1.2, an ICP27 null mutant which fails to synthesize normal amounts of DNA and late proteins; (iii) RBMu3, a mutant containing a deletion in the inverted repeats which fails to generate genomic isomers; and (iv) amplicon plasmids and vectors which contain no inverted sequences. Replication intermediates were analyzed by pulsed-field gel electrophoresis, after restriction enzyme digestion of infected-cell DNA, followed by blot hybridization. DNA fragments were statistically quantified after phosphorimaging. We observed that (i) the four possible configurations of L components of two adjacent genomes in the concatemers are present at equimolar amounts at any time during virus replication, (ii) ICP27 is not required for inversions or for branched DNA to occur, and (iii) replication intermediates of both RBMu3 mutant and amplicon plasmids or vectors do contain branched structures, although the concatemers they generate contain no inversions. These data indicate that inversions are generated by a mechanism intrinsically linked to virus DNA replication, most likely homologous recombination between inverted repeats. Branched structures are detected in all replicating molecules, including those that do not invert, suggesting that they are constitutively linked to virus DNA synthesis. Our results are consistent with the notion that the four HSV-1 genomic isomers are generated by alternative cleavage frames of replication concatemers containing equimolar amounts of L-component inversions.  相似文献   

10.
The molecular processes involved in the transduction of small staphylococcal plasmids by a generalized transducing phage, phi 11, have been analysed. The plasmids are transduced in the form of linear concatemers containing only plasmid DNA; plasmid-initiated replication is required for their generation but additive interplasmid recombination is not. Concatemers are probably generated by the interaction of one or more phage functions with replicating plasmid DNA. Insertion of any restriction fragment of the phage into the plasmid causes an approximately 10(5)-fold increase in transduction frequency, regardless of the size or genetic content of the fragment. The resulting transducing particles (Hft particles) contain mostly pure linear concatemers composed of tandem repeats of the plasmid::phage chimera, and their production requires active plasmid-initiated replication. The high frequency of transduction is a consequence of homologous recombination between the linear chimeric and phage concatemers, which has the effect of introducing an efficient pac site into the former. Following introduction into lysogenic recipient bacteria, the transducing DNA is first converted to the supercoiled form, then processed to monomers by a mechanism that requires the active participation of the plasmid replication system.  相似文献   

11.
Mapping predicts that the mitochondrial genome of the liverwort Marchantia polymorpha exists as a circular molecule, although nearly all the mitochondrial DNA (mtDNA) is found as genome-sized and multigenomic molecules in linear and branched form. We used restriction enzymes with one recognition site per genome, end-specific exonucleases and pulsed-field gel electrophoresis (PFGE) to analyze the arrangement of genomic units and the terminal structure of the molecules. We find a head-to-tail arrangement in the concatemers and circular permutation in both the monomeric and multigenomic molecules. The termini contain covalently bound protein at the 5' end and an open (unblocked) 3' end. We find that the standard in-gel procedure used to prepare large DNA molecules for PFGE may introduce extraction artifacts leading to erroneous conclusions about the termini. These artifacts can be reduced by omitting high salt (high EDTA) and protease during mitochondrial lysis. Our results suggest that the mtDNA may use a T4 phage-like mechanism of replication and that the linear molecules may be due to strand breaks mediated by type II topoisomerase.  相似文献   

12.
Circular plasmid DNA molecules and linear concatemers formed from the same plasmid exhibit strikingly different fates following microinjection into Xenopus laevis embryos. In this report, we prove quantitatively that only a minority of small, circular DNA molecules were replicated (mean = 14%) from fertilization through the blastula stage of development. At all concentrations tested, very few molecules (approximately 1%) underwent more than one round of DNA synthesis within these multiple cell cycles. In addition, unlike endogenous chromatin, the majority of circular templates became resistant to cleavage by micrococcal nuclease. The extent of nuclease resistance was similar for both replicated and unreplicated templates. Sequestration of circular molecules within a membranous compartment (pseudonucleus), rather than the formation of nucleosomes with abnormal size or spacing, apparently conferred the nuclease resistance. In contrast, most linearly concatenated DNA molecules (derived from end-to-end joining of microinjected monomeric plasmid DNA) underwent at least two rounds of DNA replication during this same period. Linear concatemers also exhibited micrococcal nuclease digestion patterns similar to those seen for endogenous chromatin yet, as judged by their failure to persist in later stages of embryogenesis, were likely to be replicated and maintained extrachromosomally. We propose, therefore, that template size and conformation determine the efficiency of replication of microinjected plasmid DNA by directing DNA to a particular compartment within the cell following injection. Template-dependent compartmentalization may result from differential localization within endogenous nuclei versus extranuclear compartments or from supramolecular assembly processes that depend on template configuration (e.g., association with nuclear matrix or nuclear envelope).  相似文献   

13.
Replicating Epstein-Barr virus (EBV) DNA molecules isolated from superinfected Raji cells were shown to consist of 80S to 65S and 58S (mature) molecules Pulse-chase experiments showed that radioactive label of DNAS molecules with the larger sedimentation coefficients was partially chased into 58S labeled forms. Formation of large concatemers of viral DNA could not be detected at any time after superinfection. The continuous presence of the 65S viral DNA intermediate throughout the replicative cycle combined with the observed inhibition of EBV DNA synthesis by addition of nontoxic levels of ethidium bromide to the superinfected cell culture led us to propose that EBV replication proceeds via a relaxed circular DNA intermediate.  相似文献   

14.
Successive viral passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in the S. exigua cell line Se301 leads to the rapid accumulation of the non-hr origin of DNA replication (ori) as large concatemers. Passage of SeMNPV in two other S. exigua cell lines, SeUCR1 and SeIZD2109, did not show the accumulation of such concatemers. When introduced into SeUCR1 and SeIZD2109 cells, the non-hr ori concatemers generated in Se301 cells were maintained but did not increase. This suggests that the non-hr ori confers a strong selective advantage in Se301 cells, but not or to a lesser extent in the other cell lines. The cell line-specific accumulation of non-hr ori concatemers might be due to a higher intrinsic recombination frequency in Se301 cells and may reflect tissue related differences involving some host cell factor(s). Since non-hr ori concatemers in Se301 cells were more abundant in intracellular than in extracellular viral DNA preparations, episomal replication and the requirement of a minimal DNA size for packaging into nucleocapsids is hypothesized.  相似文献   

15.
The mitochondrial genomes of higher plants are larger and more complex than those of all other groups of organisms. We have studied the in vivo replication of chromosomal and plasmid mitochondrial DNAs prepared from a suspension culture and whole plants of the dicotyledonous higher plant Chenopodium album (L.). Electron microscopic studies revealed sigma-shaped, linear, and open circular molecules (subgenomic circles) of variable size as well as a minicircular plasmid of 1.3 kb (mp1). The distribution of single-stranded mitochondrial DNA in the sigma structures and the detection of entirely single-stranded molecules indicate a rolling-circle type of replication of plasmid mp1 and subgenomic circles. About half of the sigma-like molecules had tails exceeding the lengths of the corresponding circle, suggesting the formation of concatemers. Two replication origins (nicking sites) could be identified on mpl by electron microscopy and by a new approach based on the mapping of restriction fragments representing the identical 5' ends of the tails of sigma-like molecules. These data provide, for the first time, evidence for a rolling-circle mode of replication in the mitochondria of higher plants.  相似文献   

16.
Mitochondrial DNA of the malarial parasite Plasmodium falciparum comprises approximately 20 copies per cell of a 6 kb genome, arranged mainly as polydisperse linear concatemers. In synchronous blood cultures, initiation of mtDNA replication coincides with the start of the 4-5 doublings in nuclear DNA that mark the reproductive phase of the erythrocytic cycle. We show that mtDNA replication coincides with a recombination process reminiscent of the replication mechanism used by certain bacteriophages and plasmids. The few circular forms of mtDNA which are also present do not replicate by a theta mechanism, but are themselves the product of recombination, and we propose they undergo rolling circle activity to generate the linear concatemers.  相似文献   

17.
We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.  相似文献   

18.
Replication and packaging of choleraphage phi 149 DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Chowdhury  A Ray  P Ray    J Das 《Journal of virology》1987,61(12):3999-4006
The intercellular replication of the circularly permuted DNA of choleraphage phi 149 involves a concatemeric DNA structure with a size equivalent to six genome lengths. The synthesis of both monomeric and concatemeric DNAs during replication of phi 149 occurred in the cytoplasm. The concatemers served as the substrate for the synthesis of mature phage DNA, which was eventually packaged by a headful mechanism starting from a unique pac site in the concatemeric DNA. Packaging of DNA into phage heads involved binding of concatemeric DNA to the cell membrane. A scheme involving sequential packaging of five headfuls proceeding in the counterclockwise direction from the pac site is proposed. After infection under high-phosphate conditions, the concatemeric DNA intermediates were not formed, although synthesis of monomeric molecules was unaffected.  相似文献   

19.
DNA replication in coliphage λ occurs in two stages. The first round of replication generates mainly circular progeny DNA by a double-branched θ-type replicative form (Ogawa et al., 1968; Schnös &; Inman, 1970). In the late stage of λ DNA replication, however, σ-type rolling-circle replicative form DNA molecules, which produce multigenomic linear concatemers, are primarily found (Takahashi, 1974).At both early and later times, a temperature shift of λ Ots or Pts infected cells from 32 °C (permissive) to 43 °C (non-permissive temperature) caused a rapid reduction of the rate of radioactive precursor incorporation into λ DNA, showing that the gene O and P products are essential for the continuation of λ DNA synthesis. Observations on the molecular fine structure of the replicating fork after a temperature shift revealed characteristic long “single-strand connections” and single-strand “whiskers” at the branch point. These observations suggest that λ gene O and P products are directly involved in the propagation of daughter strands.  相似文献   

20.
The interaction of tRNA with trivaline dansyl hydrazide trifluoroacetate (DHTV) has been studied. The shape of curves of fluorimetric titration of tRNA with DHTV and vice versa can be explained only by formation of DHTV dimers on tRNA molecules, and subsequent association of DHTV-saturated tRNA molecules with each other. The ability of tRNA molecules to form concatemers in solution in the presence of DHTV has been demonstrated by electron microscopy. Electron microscopy of the tRNA-DHTV complexes stained with uranyl acetate revealed flexible rods 6-7 nm thick and up to several micrometers long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号